
物理数学3　講義ノート

ー物理学の問題を解くための数学ー

千葉　剛

物理数学3の講義内容をメモ書きしたノート。物理数学1・2で扱った内容

（常微分方程式・ベクトル解析・複素解析）は前提としている。必要に応じて

各自復習すること。与えられた課題を期日までに解いて提出すること。
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0. はじめに

• 本講義の内容：

この講義では、物理数学 1・物理数学 2の学習をもとに、物理学で現れる特殊関数の

使い方や偏微分方程式の解法について学ぶ。

1章で振り子の問題や縄跳びに現れる楕円積分・楕円関数について学んだのち、物理

学 (電磁気学・力学・熱伝導・波動)で登場する偏微分方程式を解くための手法（フー

リエ変換）を学ぶ（2～5章）。偏微分方程式をフーリエ変換を用いて解く際に、いか

に物理数学 2で学んだ複素関数が役に立つかが実感できるであろう。

6章以降では、いくつかの物理例（波動・電磁気学・量子力学）に即し、常微分方程式

を解く際に登場する、いくつかの特殊関数（ベッセル関数・ルジャンドル多項式・球

面調和関数・球ベッセル関数）の使い方を学ぶ。いずれにせよ、「数学のための数学」

ではなく、「物理学の問題を解くために必要な数学」を学ぶ。

• 本講義の進め方:

この講義は講義資料（本資料）の配信と対面の講義により行う。

講義資料では途中の計算過程も詳しく説明している (つもりである)。受講者は配信さ

れた資料を丁寧に読み、書いてあることを自分の手を動かして確認し、疑問点を明ら

かにして講義に臨むこと。講義では、講義資料の補足説明を行い、講義資料中の分か

らないこと等の質問を受け付ける。途中の式の導出や講義資料の内容の簡単な応用問

題等を課題として提示する。講義資料の内容を理解した上で、資料中に提示された課

題を指定された期日までに提出すること。基本的に課題の解答は講義中には提示しな

い。各自仲間内で持ち寄って検討されたい。不明な点があれば質問に来られたい。

なお、講義資料は 9章まで用意しているが、受講者の反応を見て進度を適宜増やした

り減らしたりして調整する（例年 8章あたりで終わる）。

• 評価について：　

評価は講義資料中に提示された課題の解答答案の提出状況・答案の内容・出席状況に

よって行う。具体的には、全課題の 3分の 2以上を提出したもののうち平均点が 60点

以上のものを合格とする。より深い理解のためには事前に講義資料を読んだうえで出

席することが望ましいことは言うまでもない。講義に出席せずに講義資料の内容を完

全に理解することは難しい。
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• 答案作成について:

課題は、基本的に講義資料の内容を理解していれば解ける問題であるが、人と相談し

たり、本やインターネットなどを参考にして解くのは一向に構わない。

ただし、その場合には、どの部分を参考にしたのか、出典（相談した人の名前、書名、

サイトアドレス）を明記すること。本や web の丸写しは不可。自分の言葉でまとめる

こと。なお、インターネットに書かれている情報には往々にして間違いがあることを

注意するべきである。

出典 (レポート答案を作成する際に参考にした情報源)を明記せず、あたかも全て自分

の力で解いたかのような答案を作成することはアイデアの泥棒行為（剽窃）である。

試験におけるカンニングと同様、決して許されない行為である。

したがって、出典を明記せずに本/webを写した場合は不合格（D判定）とする。ま

た、相談した人の名前を書かずに他人のレポートを写した場合には、写した者及び写

させた者双方とも不合格（D判定）とする。

• 参考書について：　

この講義ノートを作成する際に主に参考にした本は次の 2冊である。

– 「電磁気学（上・下）」(ジャクソン)

アメリカで標準的に使用されている電磁気学の教科書である。電磁気学の教科書

であるが、特殊関数の説明も必要に応じて詳しくなされている。

– 「自然科学者のための数学概論」（寺沢寛一）

我が国における物理数学の古典的教科書。全てを読む必要はなく、必要な個所を

適宜参考にすればよい。

その他の参考文献は各章の終わりで提示する。より深く勉強して理解を深めたいとき

の参考にしていただきたい。

• 質問について：　

学科図書室で平日月曜から木曜まで受け付ける（10時～16時）。また、講義の際にも

質問を受け付ける。メール上で数式のやり取りをすることはむつかしいので、メール

での質問は推奨しない（夜中にメールを送り付けるのは論外）。
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1. 楕円関数

1–1. 単振り子

高校からなじみのあるであろう振り子の運動を考えよう。ただしここでは振れ角が小さ

い微小振動とはしない。

FIG. 1: 単振り子

質点mが長さ ℓの振り子の棒に取り付けられている。鉛直下方と棒のなす角（振れ角）を

θとし、反時計回りを正とする。質点の運動の軌道は半径 ℓの円周上なので、θ = 0の位置

から測った弧の長さ (= ℓθ)を座標にとって運動方程式を立てる。角度 θのときに質点に働

く力の円の接線成分は−mg sin θであるから (図 1参照)運動方程式は

mℓ
d2θ

dt2
= −mg sin θ (1.1)

となる。この運動方程式は積分できて

1

2
θ̇2 +

g

ℓ
(1− cos θ) = E (1.2)

とエネルギー積分の形にかける。ここでEは積分定数である。(1.2)式で第１項は‘‘運動エ

ネルギー”、第２項 V (θ) = g
ℓ
(1− cos θ)は”ポテンシャルエネルギー”とみなせる。微小振

動 (θ ≪ 1)ならば V (θ) ≃ g
2ℓ
θ2 となり、単振動のポテンシャルに帰着する。しかしながら、

θが小さくないときには V (θ)は θ2 より緩やかになるので、力は弱く振り子の運動は単振動

よりゆっくりになるはずである (図 2参照)。
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FIG. 2: 単振り子のポテンシャル。点線は振幅の小さいときの単振動のもの

(1.2)式をもう一度積分すれば運動方程式の解 θ(t)がわかるはずである。その前に、振動

するための条件を考える。それには、(1.2)式で θ = πとしてみればよい: 1
2
θ̇2 = E − 2g

ℓ
。

θ = πのときも‘‘ 運動エネルギー”がゼロ以上であれば θ = πにとどまるかそれを超えて

θ > πになる。つまり、振動ではなく回転運動する。我々は振動運動に興味があるので、そ

のためにはE < 2g
ℓ
である必要がある。そこで、

E =
2g

ℓ
k2 (k2 < 1) (1.3)

とおくと、(1.2)式は

θ̇2 =
4g

ℓ

(
k2 − sin2 θ

2

)
(1.4)

となる。振れ角が最大 θmになったとき、θ̇ = 0であるから、kは

k = sin
θm
2

(1.5)

と書けることに注意する。微小振動は k → 0の極限に相当する。

1. Jacobiの楕円関数

それでは、(1.4)式を積分して、θと tの関係を求めてみよう。t = 0で θ = 0として θ̇ > 0

の範囲（つまり振れ始めて折り返すまでの間）で

2

√
g

ℓ
t =

∫ θ

0

dθ√
k2 − sin2 θ

2

(1.6)
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となる。ここで sin θ
2
= kz と変数変換をすると次のように書き換えられる√

g

ℓ
t =

∫ z

0

dz√
1− k2z2

√
1− z2

≡ sn−1z (1.7)

k → 0のとき、中央の積分は sin−1 zになり、予想していたように解は単振動になる：θm ≪ 1

より k = sin θm
2

→ θm/2 で、z = θ/θm = sin
(√

g
ℓ
t
)
。そこで、一般の k(0 < k < 1)に対して

(1.7)の中央の積分を sn−1zと書くと、z = sn
(√

g
ℓ
t, k
)
と与えられることになる。sn(x, k)は

Jacobi の楕円関数の一つで sn関数と呼ばれる。kを母数という。定義から、sn(x, 0) = sin x

である。特に、sn(0, k) = 0 である。

こうして、解は

z =
1

k
sin

θ

2
=

sin θ
2

sin θm
2

= sn

(√
g

ℓ
t, k

)
(1.8)

と書かれる。図 3に θm → 0, π/4, π/2, πの場合の解の振る舞いを示した。振れ角が大きくな

るほど振動は角度が θm付近に長くとどまっている様子がわかるであろう。

1 2 3 4 5 6
t g

l

-1.0

-0.5

0.5

1.0

m

m⟶0

m π/4

m=π/2

m=π

FIG. 3: θmを変えたときの θ(t)の振舞い。
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2. 振り子の周期：第 1種完全楕円積分

振動の周期 T も求めよう。θ = 0 → θ = θmまでは周期の 1/4であるから、(1.6) 式より

T = 2

√
ℓ

g

∫ θm

0

dθ√
k2 − sin2 θ

2

= 4

√
ℓ

g

∫ 1

0

dz√
1− k2z2

√
1− z2

= 4

√
ℓ

g
sn−1(1) ≡ 4

√
ℓ

g
K(k) (1.9)

となる。ここで、K(k) (0 ≤ k ≤ 1) は第１種完全楕円積分と呼ばれる定積分で、次式で定

義される：

K(k) =

∫ 1

0

dz√
1− k2z2

√
1− z2

=

∫ π/2

0

dϕ√
1− k2 sin2 ϕ

(1.10)

第２式では z = sinϕと変数変換した。K(0) = π
2
であり、k → 0で T は微小振動の周期に

帰着する：T = 2π
√
ℓ/g。また、sn−1(1) = K(k) なので、sn(K(k), k) = 1 である。図 4に

θmを変えたときの単振動の時の周期で規格化した周期を示した。振幅が大きくなるほど周

期が長くなることが分かる。なお、θm → π(k → 1)で周期は log発散する：

K(k) → 1

2
log

16

1− k2
(1.11)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
θm0.0

0.5

1.0

1.5

2.0

2.5

3.0

T g

l

2π

FIG. 4: 周期 T と最大振幅 θmの関係
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1–2. 楕円の周長：第２種完全楕円積分

y

a

b



a

x

𝑏cos𝜙

𝑎sin𝜙

(x,y)

FIG. 5: 楕円上の点は半径 a の円の位置を y 軸方向に b/a 倍したもの

楕円 x2

a2
+ y2

b2
= 1(a > b) 上の点 (x, y) は、半径 a の円上の位置ベクトルと y 軸とのなす

角を ϕ とすると x = a sinϕ, y = b cosϕ ととれる (図 5参照)。従って、楕円の周の長さは∮ √
dx2 + dy2 = 4

∫ π/2

0

√
a2 cos2 ϕ+ b2 sin2 ϕ dϕ

= 4a

∫ π/2

0

√
1− a2 − b2

a2
sin2 ϕ dϕ

= 4a

∫ π/2

0

√
1− k2 sin2 ϕ dϕ ≡ 4aE(k) (1.12)

と与えられる。ただし、k =
√
a2 − b2/aである。ここでE(k)は第２種完全楕円積分と呼ば

れる (0 ≤ k ≤ 1)：

E(k) =

∫ π/2

0

√
1− k2 sin2 ϕ dϕ =

∫ 1

0

√
1− k2z2

1− z2
dz (1.13)

第２式では z = sinϕと変数変換した。
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1–3. cn, dn, tn および楕円関数の微分

sin関数もどきの sn 関数に対応して、cos関数もどきの cn関数や tan関数もどきの tn関

数1も三角関数と同様に次のように定義しておく：

cn(x, k) =
√

1− sn2(x, k) (1.14a)

tn(x, k) =
sn(x, k)

cn(x, k)
(1.14b)

また、楕円関数の微分を計算するときに必要になるので、次で定義される dn関数も導入し

ておく：

dn(x, k) =
√
1− k2sn2(x, k) (1.14c)

sn(0, k) = 0, cn(0, k) = 1, tn(0, k) = 0, dn(0, k) = 1 である。また、

sn(K(k), k) = 1 より、cn(K(k), k) = 0, dn(K(k), k) =
√
1− k2 ≡ k′ である。図 6 に

sn(x, k), cn(x, k), dn(x, k), tn(x, k) を示した。

π 2π
x

-1.0
-0.5
0.0
0.5
1.0

sn

π 2π
x

-1.0
-0.5
0.0
0.5
1.0

cn

0 π 2π
x0

0.5

1

dn

π

2
π 3π

2

x0

5

-5

tn

FIG. 6: sn(x, k), cn(x, k), dn(x, k), tn(x, k) 関数。k = 0.8 の場合（実線）と k = 0 の場合（破線）。

sn(x, 0) = sinx, cn(x, 0) = cosx,dn(x, 0) = 1, tn(x, 0) = tanx であることに注意。

1 tn(x, k) を（sn 割る cn なので）sc(x, k) と書くこともある。
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楕円関数の微分を求めてみよう。まず、sn(x, k)の微分を計算してみる。z = sn(x, k)と

おく。sn関数の逆関数の定義式 (1.7)式

x = sn−1z =

∫ z

0

dz√
1− k2z2

√
1− z2

(1.15)

の両辺を xで微分すれば、

1 =
dz

dx

1√
1− k2z2

√
1− z2

(1.16)

つまり、

d

dx
sn(x, k) =

dz

dx
=

√
1− k2z2

√
1− z2 = cn(x, k)dn(x, k) (1.17)

これを用いると、cn(x, k) の微分は

d

dx
cn(x, k) =

d

dx

√
1− sn2(x, k) = −sn(x, k)cn(x, k)dn(x, k)√

1− sn2(x, k)
= −sn(x, k)dn(x, k) (1.18)

となる。一方、z = cn(x, k)とおくと

dz

dx
= −sn(x, k)dn(x, k) = −

√
1− z2

√
1− k2(1− z2) ≡ −

√
1− z2

√
k′2 + k2z2 (1.19)

と書けることから (k′ =
√
1− k2)、cn関数の逆関数 x = cn−1zは cn(0, k) = 1に注意して次

のように書ける：

x = cn−1z =

∫ 1

z

dz√
1− z2

√
k′2 + k2z2

(1.20)

同様にして、tn(x, k), dn(x, k)の微分や逆関数の積分公式は次のように与えられることがわ

かる。

d

dx
tn(x, k) =

dn(x, k)

cn2(x, k)
(1.21)

tn−1z =

∫ z

0

dz√
1 + z2

√
1 + k′2z2

(1.22)

d

dx
dn(x, k) = −k2sn(x, k)cn(x, k) (1.23)

dn−1z =

∫ 1

z

dz√
1− z2

√
z2 − k′2

(1.24)
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1–4. 楕円関数の加法定理

sn(x, k) = snxと略記すると

sn(x+ y) =
snx cny dny + sny cnx dnx

1− k2sn2x sn2y
(1.25a)

cn(x+ y) =
cnx cny − snx sny dnx dny

1− k2sn2x sn2y
(1.25b)

dn(x+ y) =
dnx dny − k2snx sny cnx cny

1− k2sn2x sn2y
(1.25c)

が成り立つ。ここでは、(1.25a)式を証明する。

∆(u) =
√

(1− u2)(1− k2u2) とおき、定数 w に対して∫ u

0

du

∆(u)
+

∫ v

0

dv

∆(v)
=

∫ w

0

dw

∆(w)
(1.26)

を満たすような u, v の関係を求める。そのためには、(1.26)式の微分形 (w が定数であるこ

とに注意)

du

∆(u)
+

dv

∆(v)
= 0 (1.27)

を u = 0 のとき、v = w となるように積分すればよい。ここで、変数 s を du
ds

= ∆(u) と導

入すると、(1.27) 式より、dv
ds

= −∆(v)。２階微分は

d2u

ds2
=

d

ds
∆(u) =

du

ds

d

du
∆(u) = ∆(u)

d

du
∆(u) = 2k2u3 − (1 + k2)u (1.28a)

d2v

ds2
= 2k2v3 − (1 + k2)v (1.28b)

となり、

v
d2u

ds2
− u

d2v

ds2
= 2k2uv(u2 − v2) (1.29a)

v2
(
du

ds

)2

− u2
(
dv

ds

)2

= −(1− k2u2v2)(u2 − v2) (1.29b)

という関係が得られる。この (1.29a)式を (1.29b)式で割って、v du
ds
+udv

ds
を掛けて積分すると∫

v d2u
ds2

− ud2v
ds2

v du
ds

− udv
ds

ds =

∫ −2k2uv
(
v du
ds

+ udv
ds

)
1− k2u2v2

ds

ln

(
v
du

ds
− u

dv

ds

)
= ln(1− k2u2v2) + const.
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となる。したがって、v∆(u) + u∆(v) = C(1− k2u2v2)。C は積分定数。u = 0 で v = w と

なるように積分定数を決めると

v∆(u) + u∆(v) = w(1− k2u2v2)

つまり

w =
v∆(u) + u∆(v)

1− k2u2v2
. (1.30)

となる。ここで、x = sn−1u, y = sn−1v, z = sn−1w とおくと、(1.26)式より x + y = z であ

り、また ∆(u) =
√

(1− u2)(1− k2u2) = cnx dnx であるから

w = snz = sn(x+ y) = w =
snx cny dny + sny cnx dnx

1− k2sn2x sn2y
(1.31)

が得られる。

1–5. 楕円関数の周期

1. 実数方向の周期

K(k) = K と略記して、snK = 1, cnK = 0, dnK = k′より、加法定理から sn(2K) =

0, cn(2K) = −1, dn(2K) = 1 が得られる。これを繰り返し用いることで、次の関係式が得

られる。

sn(x+K) =
cnx

dnx
, cn(x+K) = −k′ snx

dnx
, dn(x+K) =

k′

dnx
(1.32a)

sn(x+ 2K) = −snx, cn(x+ 2K) = −cnx, dn(x+ 2K) = dnx (1.32b)

sn(x+ 4K) = snx, cn(x+ 4K) = cnx, dn(x+ 4K) = dnx (1.32c)

すなわち、sn(x, k) と cn(x, k) の周期は 4K、dn(x, k) の周期は 2K である。

2. 虚数変数の楕円関数

実は、楕円関数は実数方向のみならず虚数方向にも周期性を持っている（２重周期性）。

これを見るために、どのようにすれば変数を虚数に拡張できるか考えてみる。z = sn(x, k)

の定義式

x = sn−1z =

∫ z

0

dt√
1− k2t2

√
1− t2

(1.15)
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を念頭に、x や z を複素数に拡張するために次の実積分を考える (tn−1(z, k′) であることに

注意)。

y =

∫ z

0

dt√
1 + k2t2

√
1 + t2

(
= tn−1(z, k′)

)
. (1.33)

ここで、it = u と置き換えると、

iy =

∫ iz

0

du√
1− k2u2

√
1− u2

(1.34)

となる。そこで、この積分を sn−1(iz) の定義とする。つまり、sn(iy, k) = iz。一方、(1.33)

式より、z = tn(y, k′) = sn(y, k′)/cn(y, k′) であるから、虚数変数に対して

sn(iy, k) = i
sn(y, k′)

cn(y, k′)
= itn(y, k′) (1.35a)

と書ける。cn(iy, k) は cn(iy, k) =
√

1− sn2(iy, k) より、

cn(iy, k) =
√

1 + tn2(x, k′) =
1

cn(y, k′)
(1.35b)

また、dn(iy, k) =
√

1− k2sn2(iy, k) より、

dn(iy, k) =
dn(y, k′)

cn(y, k′)
(1.35c)

と決まる。

3. 虚数方向の周期

虚数変数の楕円関数は k′を母数とする実変数の楕円関数と対応しているとみなせること

が分かったので、k′を母数とする第１種完全楕円積分をK ′ = K(k′)として導入しておく2：

K ′ = K(k′) =

∫ 1

0

dz√
1− k′2z2

√
1− z2

=
1

i

∫ 1/k

1

du√
1− k2u2

√
1− u2

(1.36)

このとき、加法定理から次の関係が得られる。

sn(x+ iK ′) =
1

ksnx
, cn(x+ iK ′) = −i dnx

ksnx
, dn(x+ iK ′) = −icnx

snx
(1.37a)

sn(x+ 2iK ′) = snx, cn(x+ 2iK ′) = −cnx, dn(x+ 2iK ′) = −dnx (1.37b)

sn(x+ 4iK ′) = snx, cn(x+ 4iK ′) = cnx, dn(x+ 4iK ′) = dnx (1.37c)

2 最後の等式より、K + iK ′ =
∫ 1

0
dz√

1−k2z2
√
1−z2

+
∫ 1/k

1
dz√

1−k2z2
√
1−z2

=
∫ 1/k

0
dz√

1−k2z2
√
1−z2

= sn−1(1/k) と

なり、sn(K + iK ′) = 1/k がえられる。また、dn(K + iK ′) =
√
1− k2sn2(K + iK ′) = 0 である。
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つまり、sn(x, k)の虚軸方向の周期は 2iK ′、cn(x, k)とdn(x, k)の虚軸方向の周期は 4iK ′

である。sn(x, k)は実軸方向の周期は 4K なので、実軸方向と虚軸方向の周期で張られる長方

形の面積は 8KK ′、dn(x, k) も同様であるが、cn(x, k)だけは 16KK ′なのでもっと短い周期

の方向があるはずである。それは、cn0 = 1, cn(2K) = −1, cn(2K + 2iK ′) = 1 から見当を

つけると、実際 cn(x+2K +2iK ′) = cnx とわかるので、cn(x, k)の周期は 4Kと 2K +2iK ′

であることがわかる。二つの周期方向で張られる平行四辺形の面積は 8KK ′になる。このよ

うな実部 0 ∼ 4K、虚部 0 ∼ 2K ′の範囲の最小の周期を楕円関数の基本周期という (図 7)。

FIG. 7: 楕円関数の基本周期

まとめると、楕円関数は、整数 m,n として次のような２重周期性を持っている。

sn (x+ 4mK(k) + 2inK ′(k), k) = sn(x, k) (1.38a)

cn (x+ 4mK(k) + 2n(K(k) + iK ′(k)), k) = cn(x, k) (1.38b)

tn (x+ 2mK(k) + 4inK ′(k), k) = tn(x, k) (1.38c)

dn (x+ 2mK(k) + 4inK ′(k), k) = dn(x, k) (1.38d)
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1–6. なわとびのひもの形

2a

ym

a


x     x+dx

ds
T(s)

T(s+ds)

FIG. 8: なわとびのひも

なわとびをしているときのひもの形も楕円関数で表される。全長 ℓ で線密度 λ のひもを

両手で持ち、角速度 ω で回転させる。両手の間隔を 2a とし、水平方向に x 軸、垂直方向

に y 軸をとり、ひもの位置は x = 0, 2a で y = 0 とし、原点から測った x までのひもの長

さを s とする (図 8参照)。

x と x+ dx の間にある長さ ds(=
√
dx2 + dy2) の微小ひもに着目し、ひもに働く力の釣

り合いを考える。重力は無視するものとすると、ひもに働く力は張力と遠心力である。

張力を T (s) とすると、s の位置でのひもに働く張力の x 成分は −(T dx
ds
)s、s + ds での

ひもに働く張力の x 成分は (T dx
ds
)s+ds　であるから、x 方向の力の釣り合いから

0 =

(
T
dx

ds

)
s+ds

−
(
T
dx

ds

)
s

=
d

ds

(
T
dx

ds

)
ds (1.39)

となり、

T
dx

ds
=一定 ≡ T0 (1.40)

が得られる。これからもわかるように張力 T (s) = T0
ds
dx
はひもの位置により異なる。

つぎに、y 方向には張力に加えて遠心力 (λds)yω2 が働くので、力の釣り合いは

0 =

(
T
dy

ds

)
s+ds

−
(
T
dy

ds

)
s

+ λdsyω2

=
d

ds

(
T
dy

ds

)
ds+ λyω2ds (1.41)

17



となる。ここで、T に (1.40)を代入すると (1.41)は

0 =
d

ds

(
T0
dy

dx

)
+ λyω2

=
dx

ds

d

dx

(
T0
dy

dx

)
+ λyω2 (1.42)

となる。さらに、ds2 = dx2 + dy2 より ds
dx

=

√
1 +

(
dy
dx

)2
であるから、(1.42)は

d2y

dx2
+

λ

T0
ω2y

√
1 +

(
dy

dx

)2

= 0 (1.43)

となる。これがなわとびのひもが満たすべき微分方程式である。この式には x があらわに

入っていないので、 p = dy/dx と置くと、 p が未知関数で y が独立変数の 1階微分方程式

に書き直せる。d2y/dx2 = p(dp/dy) となるから、(1.43)は

pdp
dy√

1 + p2
+

λ

T0
ω2y = 0 (1.44)

となり、これを y で積分すれば√
1 + p2 +

λ

2T0
ω2y2 =一定 (1.45)

となる。ここで、p = dy/dx = 0 のときの y を y = ym と置けば

p =
dy

dx
=

√
λω2

T0

√
y2m − y2

√
1 +

λω2

4T0
(y2m − y2) (1.46)

となる。さらに z = y/ym とし、

k2 =

λω2y2m
4T0

1 + λω2y2m
4T0

(1.47a)

k′2 = 1− k2 =
1

1 + λω2y2m
4T0

(1.47b)

とおくと、(1.46) は

dz

dx
=

√
λω2

T0

√
1 +

λω2y2m
4T0

√
1− z2

√
1− k2z2 ≡ C

√
1− z2

√
1− k2z2 (1.48)

C =

√
λω2

T0

√
1 +

λω2y2m
4T0

=
2k

ymk′2
(1.49)
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となり、積分するとまさしく楕円関数になる：∫
dz√

(1− z2)(1− k2z2)
= sn−1z =

∫
Cdx = Cx

z =
y

ym
= sn(Cx, k) (1.50a)

ただし、x = 0 で y = 0 という条件を使った。さらに、sn(2K(k)) = 0 より、x = 2a で

y = 0 の条件は、

K(k) = Ca =
2k

ymk′2
a (1.51)

となる。

最後にひもの全長 ℓ を求めよう。ひもの形が (1.50a) で与えられているときに、ひもの

長さは (1.17) を用いると

ds =
√
dx2 + dy2 =

√
1 + C2y2mcn

2(Cx)dn2(Cx)dx (1.52)

と与えられる。ここで、cn2x = 1 − sn2x = 1 + 1
k2
(dn2x − 1) と書き換えられることと

Cym = 2k/k′2 ((1.49) 式)を用いると

ds

dx
=

√
1 +

4k2

k′4

(
1 +

1

k2
(dn2(Cx)− 1)

)
dn2(Cx)

=

√
1− 4

k′2
dn2(Cx) +

4

k′4
dn4(Cx) =

2

k′2
dn2(Cx)− 1 (1.53)

となるので、全長は

ℓ =
2

k′2

∫ 2a

0

dn2(Cx)dx− 2a (1.54)

となる。ここで、sn(Cx) = sinϕ とおくと、cn(Cx)dn(Cx)d(Cx) = cosϕdϕ =√
1− sin2 ϕdϕ =

√
1− sn2(Cx)dϕ = cn(Cx)dϕ より、全長 ℓ は

ℓ =
2

Ck′2

∫ π

0

√
1− k2 sin2 ϕdϕ− 2a

=
4

Ck′2
E(k)− 2a =

4a

k′2
E(k)

K(k)
− 2a (1.55)

と与えられる。ここで (1.51) を用いた。E(k) は第 2種完全楕円積分 (1.13) である。

以上、まとめると、なわとび (全長 ℓ 線密度 λ)を幅 2a で角速度 ω で回したときのひも

の形と張力は

y = ymsn(Cx, k) = ymsn(K(k)x/a, k) (1.56a)

T = T0
ds

dx
= T0

ds

dx
= T0

(
2

1− k2
dn2(Cx)− 1

)
(1.56b)
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で与えられる。k は (1.55) により ℓ を与えると決まる。これを用いて ym は (1.51) により

決まる。さらに T0 は (1.47a) により決まる。ℓ = 4a としたときのひもの形を図 9 に示した。

0.5 1.0 1.5 2.0

x

a
0.0

0.5

1.0

1.5

y

a

FIG. 9: ℓ = 4a のときのなわとびのひもの形
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2. フーリエ変換

2–1. フーリエ級数

任意の 3次元ベクトル A は線形独立な 3つの単位ベクトル i, j,k (i · j = j · k = k · i = 0)

の線形結合で表される: A = Axi+Ayj+Azk. これと同じことを関数の世界で行ってみる。

つまり、任意の関数を（何らかの意味で独立な）関数の線形結合で表す、ということである。

ある実定数 T (> 0)に対して

f(x+ T ) = f(x)

となるような関数を周期関数といい、T を “周期”という。例えば cosx, sin 2x, 1 などは周

期関数（それぞれ周期 2π, π, 任意）である。T が周期なら T の整数倍 nT も周期であること

に注意。

いま、周期 2L(> 0)をもつ関数 f(x) を考える (f(x+ 2L) = f(x))。f(x)を周期 2Lをも

つ三角関数の集まりで表せないか考えてみる。Lが周期なら 2Lも周期であることに注意す

ると、

1, cos
π

L
x, sin

π

L
x, cos

2π

L
x, sin

2π

L
x, cos

3π

L
x, sin

3π

L
x, cos

4π

L
x, . . .

と無限に続く候補があげられる。そこで、それぞれの関数の係数は未定にして

f(x) =
a0
2

+ a1 cos
π

L
x+ b1 sin

π

L
x+ a2 cos

2π

L
x+ b2 sin

2π

L
x+ . . .

=
a0
2

+
∞∑
n=1

(
an cos

nπ

L
x+ bn sin

nπ

L
x
)

(2.1)

と無限級数で展開してみる。この展開係数 an, bnが一意的に決定できれば (無限級数が収束

するとして)、関数 f(x)はこのように三角関数で展開できることになる。

(2.1)式から an, bnを求めるために次の公式を使う。まず、mが 0以上の整数ならば

∫ L

−L

cos
mπ

L
x dx =

 2L (m = 0)

0 (m ̸= 0)
(2.2a)

∫ L

−L

sin
mπ

L
x dx = 0. (2.2b)
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また、mが正の整数ならば∫ L

−L

sin
mπ

L
x cos

nπ

L
x dx = 0 (2.3a)

∫ L

−L

cos
mπ

L
x cos

nπ

L
x dx =

 L (m = n)

0 (m ̸= n)
(2.3b)

∫ L

−L

sin
mπ

L
x sin

nπ

L
x dx =

 L (m = n)

0 (m ̸= n)
(2.3c)

そこで、(2.1)式の両辺に cos mπ
L
x を掛けて (−L,L)の範囲で積分する:∫ L

−L

f(x) cos
mπ

L
x dx =

a0
2

∫ L

−L

cos
mπ

L
x dx

+
∞∑
n=1

(
an

∫ L

−L

cos
nπ

L
x cos

mπ

L
x dx+ bn

∫ L

−L

sin
nπ

L
x cos

mπ

L
x dx

)
=

a0
2

∫ L

−L

cos
mπ

L
x dx+

∞∑
n=1

an

∫ L

−L

cos
nπ

L
x cos

mπ

L
x dx (2.4)

ここで、第 2式では (2.3a) 式を用いた。m = 0の時は (2.2a) 式と (2.3b) 式より右辺第一項

のみ残り ∫ L

−L

f(x) dx =
a0
2

∫ L

−L

dx = a0L (2.5)

となる。m ̸= 0の場合は、(2.3b)式より、右辺の級数和のうち n = mのみ残り∫ L

−L

f(x) cos
mπ

L
x dx = amL (2.6)

となる。二つをまとめて 0以上の整数 nに対して

an =
1

L

∫ L

−L

f(x) cos
nπ

L
x dx (2.7)

と書ける。

同様にして、(2.1)式の両辺に sin mπ
L
x を掛けて (−L,L)の範囲で積分すれば正の整数 n

に対して

bn =
1

L

∫ L

−L

f(x) sin
nπ

L
x dx (2.8)

と書ける。
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したがって、(2.1)式の展開係数 an, bnが一意的に決定できたことになる。関数 f(x)を三

角関数の線形結合で表せたことになる。(2.3a),(2.3b),(2.3c)式はベクトルの直交関係に対応

する「関数の直交関係」である。この係数 an, bnをフーリエ係数と呼び、フーリエ係数 an, bn

を用いた級数 (2.1)式をフーリエ級数と呼ぶ。3つまり、周期関数は三角関数の級数和で書け

ることになる。もともとの関数 f(x)が持っている情報はすべてフーリエ係数に集約されて

いることになる。

2–2. フーリエ級数の複素表示

次に、周期関数ではない関数に関するフーリエ級数（フーリエ積分）に移行するために、

フーリエ級数を複素数を用いて書き換えてみる。オイラーの公式

eiθ = cos θ + i sin θ

より

cos θ =
eiθ + e−iθ

2

sin θ =
eiθ − e−iθ

2i

と書けることを用いると (2.1)式は

f(x) =
a0
2

+
∞∑
n=1

(
an

(
einπx/L + e−inπx/L

2

)
+ bn

(
einπx/L − e−inπx/L

2i

))
=

a0
2

+
∞∑
n=1

((
an − ibn

2

)
einπx/L +

(
an + ibn

2

)
e−inπx/L

)

=
a0
2

+
∞∑
n=1

(
an − ibn

2

)
einπx/L +

−∞∑
n=−1

(
a−n + ib−n

2

)
einπx/L

=
∞∑

n=−∞

cne
inπx/L (2.9)

3 フーリエ級数は、1）f(x)は区間 (−L,L)で有限個の点を除いて一価関数、2）f(x)と f ′(x)は区間 (−L,L)

で区分的に連続（有限個しか不連続点を持たない）ならば、x が連続点ならば f(x) に、不連続点ならば

(f(x+ 0) + f(x− 0))/2に、収束することが示される。
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となる。ここで、第 3式の第 3項では −n→ n と置き換えた。また、最後の式で cnを以下

のように導入した。

cn =


an−ibn

2
(n > 0)

a0
2

(n = 0)

a−n+ib−n

2
(n < 0)

(2.10)

フーリエ係数の表式 (2.7)(2.8)式を用いると、cnは nの正負にかかわらず

cn =
1

2L

∫ L

−L

f(x)
(
cos

nπ

L
x− i sin

nπ

L
x
)
dx

=
1

2L

∫ L

−L

f(x)e−inπx/Ldx (2.11)

と書けることがわかる。
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2–3. フーリエ変換

つぎに、フーリエ級数とは異なり、f(x)が周期関数でないときにフーリエ級数はどのよ

うになるか考えてみる。それは周期LをL→ ∞ととることに相当する。その際、(2.11)式

で nπ/L ≡ kは L→ ∞の極限で有限とし、さらに cn自体はゼロになるが積分

g(k) ≡ lim
L→∞

L

π
cn =

1

2π

∫ ∞

−∞
f(x)e−ikxdx (2.12)

は有限であるとする (つまり lim|x|→∞ f(x) = 0)。するとフーリエ級数 (2.9)式は L → ∞の

極限で

f(x) = lim
L→∞

∞∑
n=−∞

cne
ikx

= lim
L→∞

∞∑
n=−∞

π

L
g(k)eikx (2.13)

となるが、∆nπ/L = ∆kより (∆n = 1)、
∑

n ∆nπ/L =
∑

k ∆kとなり、∆kはL→ ∞の極

限で無限小になるので、この和は kに関する積分に移行する。すなわち、

lim
L→∞

∑
n

∆n
π

L
= lim

L→∞

∑
k

∆k =

∫
dk (2.14)

したがって、フーリエ級数 (2.13)式は次のような積分になる：

f(x) =

∫ ∞

−∞
g(k)eikxdk . (2.15)

f(x)から g(k)を決める (2.12)式を f(x)のフーリエ変換、g(k)から f(x)を決める (2.15)式

を f(x)のフーリエ逆変換という。また、(2.12)式や (2.15)式のように被積分関数に e±ikxが

含まれる積分をフーリエ積分という。

以下では、g(k)の代わりに f̂(k) ≡
√
2πg(k) を導入し、対称的な形でフーリエ変換・逆

変換を再定義しておく:

f̂(k) =
1√
2π

∫ ∞

−∞
f(x)e−ikxdx , (2.16a)

f(x) =
1√
2π

∫ ∞

−∞
f̂(k)eikxdk . (2.16b)
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2–4. デルタ関数

ここで、(2.16b）式の f̂(k)に (2.16a)式を代入してみる。

f(x) =
1√
2π

∫ ∞

−∞

(
1√
2π

∫ ∞

−∞
f(x′)e−ikx′

dx′
)
eikxdk

=

∫ ∞

−∞
f(x′)

(
1

2π

∫ ∞

−∞
eik(x−x′)dk

)
dx′

≡
∫ ∞

−∞
f(x′)δ(x− x′)dx′ (2.17)

最後の式で導入した δ(x− x′)をデルタ関数という:

δ(x) =
1

2π

∫ ∞

−∞
eikxdk . (2.18)

(2.17)式を見ると分かるように、デルタ関数 δ(x−x′)は f(x′)を積分して f(x)をはじき出す

役割をしている。つまり、x′積分で x− x′ = 0となる x′(= x)を抜き出す役割をしているこ

とになる。積分というより置き換え操作に近い。特に、f(x) = 1としてみると、(2.17)式は

1 =

∫ ∞

−∞
δ(x)dx (2.19)

となる。

ところで、(2.18)式を見ると分かるように x = 0では δ(x)は発散している。それ以外

(x ̸= 0) では、たとえば f(x) が x = a(̸= 0) の近傍 (a − ϵ, a + ϵ) でのみゼロでない値を持

つものとすると、 ∫ ∞

−∞
f(x)δ(x)dx =

∫ a+ϵ

a−ϵ

f(x)δ(x)dx (2.20)

となる。一方　 (2.17) 式の定義より、左辺は
∫∞
−∞ f(x)δ(x)dx = f(0) であるが、f(x) が

x = a 近傍でのみ値を持つから f(0) = 0 であるので
∫ a+ϵ

a−ϵ
f(x)δ(x)dx = 0 となる。したがっ

て (a− ϵ, a+ ϵ) で δ(x) = 0 でなければならない。a は任意であるから、x ̸= 0 では δ(x) = 0

ということになる：

δ(x) =

∞ (x = 0)

0 (x ̸= 0) .
(2.21)

しかしながら (2.19)式より積分自体は有限で 1なのである。

なお、オイラーの公式 (2.9)より、デルタ関数は次のように表すこともできる:

δ(x) =
1

π

∫ ∞

0

cos(kx)dk,

δ(x) = lim
λ→∞

1

2π

∫ λ

−λ

eikxdk = lim
λ→∞

1

2π

eiλx − e−iλx

ix
= lim

λ→∞

sinλx

πx
.
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2–5. 微分のフーリエ変換

フーリエ変換の有用性は関数 f(x)の導関数 df(x)/dxのフーリエ変換を考えると明らかに

なる。そこで、(2.16a)式で f(x)を df(x)/dxに置き換えてみる：

d̂f

dx
(k) =

1√
2π

∫ ∞

−∞

df(x)

dx
e−ikxdx

=
1√
2π
e−ikxf(x)

∣∣∣∞
−∞

+
ik√
2π

∫ ∞

−∞
f(x)e−ikxdx

= ikf̂(k) . (2.22)

ここで、2番目の式では部分積分を行い、3番目の式では lim|x|→∞ f(x) = 0とフーリエ変換

の定義式 (2.16a)式を用いた。すなわち、関数の微分のフーリエ変換は単に元の関数のフー

リエ変換に ikが掛かるだけである。この結果を繰り返せば、２階微分のフーリエ変換は

d̂2f

dx2
(k) = ik

d̂f

dx
(k) = (ik)2f̂(k) = −k2f̂(k) (2.23)

となる。標語的にいうと「フーリエ変換により微分は掛け算になる」である。微分を解くに

は積分が必要だが、掛け算を解くには割り算をすればよい、のである。どちらが簡単かは明

らかであろう。

2–6. 多変数関数への拡張

これまでは、1変数関数の場合だけを扱ってきたが、物理で重要になるような多変数関数

(例えば f(x, y, z))への拡張も容易である。各変数ごとにフーリエ変換を行えばよい。すなわ

ち、3変数の場合はフーリエ変換は 3重積分になる。

f̂(kx, ky, kz) =
1

(
√
2π)3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f(x, y, z)e−ikxxe−ikyye−ikzzdxdydz

=
1

(2π)3/2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f(x, y, z)e−i(kxx+kyy+kzz)dxdydz (2.24)

以降、３重積分や３変数の表記が煩雑なので、最後の式を次のように略記することにする:

f̂(k) =
1

(2π)3/2

∫
f(x)e−ik·xd3x (2.25)

フーリエ逆変換は

f(x) =
1

(2π)3/2

∫
f̂(k)eik·xd3k (2.26)

27



である。また、偏微分のフーリエ変換も１変数の場合と同様である:

∂̂f

∂x
(k) = ikxf̂(k) . (2.27)

ここで、lim|x|→∞ f(x) = 0を仮定した。同様にして、物理でよく出てくるラプラス演算子

∇2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2を作用させた f(x)のフーリエ変換も

∇̂2f(k) = −(k2x + k2y + k2z)f̂(k) = −k2f̂(k) (2.28)

となる。３次元のデルタ関数 δ(x)は δ(x) = δ(x)δ(y)δ(z)と定義される。

参考文献

• 「物理のための数学」(和達三樹)
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3. 偏微分方程式：ポアソン方程式

フーリエ変換を使って、電荷密度分布 ρ(x)に対して静電ポテンシャルΦ(x)が従う4次の

ような偏微分方程式5

∇2Φ(x) = −ρ(x)
ϵ0

(3.1)

を解いてみる（ϵ0は真空の誘電率）。点電荷 qの場合はΦ(x) = q
4πϵ0r

となることは知ってい

るが (r = |x|)、これを一般の電荷密度 ρ(x)に対して解こうというわけである。

(3.1)式の両辺をフーリエ変換すると

−k2Φ̂(k) = − ρ̂(k)
ϵ0

(3.2)

となるから、両辺を k2で割れば Φ̂(k)が求まり、あとはフーリエ逆変換すればΦ(x)が求ま

る。ところがこの方法では、電荷密度分布ごとに毎回フーリエ変換を行う必要がある。もっ

と効率的な方法がないだろうか。それがこれから述べるグリーン関数法である。

3–1. グリーン関数法

(3.1)式の右辺を−δ(x)とし、このときのΦ(x)を特にG(x)（グリーン関数という）と書

いたポアソン方程式

∇2G(x) = −δ(x) (3.3)

を解くことを考える。実はこのグリーン関数さえ求まれば、任意の電荷密度分布に対して

(3.1)式の解を構成することができるのである。

このことを示してみる。(3.3)式をフーリエ変換すると、

−k2Ĝ(k) = − 1

(2π)3/2

∫
δ(x)e−ik·xd3x = − 1

(2π)3/2
(3.4)

となり、

Ĝ(k) =
1

(2π)3/2k2
(3.5)

4 (3.1)式は電場Eに関するガウスの法則∇ ·E = ρ/ϵ0と電場と静電ポテンシャルの関係式E = −∇Φから導

出される。
5 (3.1)式のようにラプラス演算子を作用させた偏微分方程式をポアソン方程式という。右辺がゼロのときは
特にラプラス方程式という。
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をえ、これをフーリエ逆変換すればG(x)は

G(x) =
1

(2π)3/2

∫
Ĝ(k)eik·xd3k (3.6)

と与えられる。(3.2)式より、Φ(x)はフーリエ逆変換により

Φ(x) =
1

(2π)3/2

∫
Φ̂(k)eik·xd3k

=

∫ (
1

(2π)3/2k2

)
ρ̂(k)

ϵ0
eik·xd3k

=

∫
Ĝ(k)

ρ̂(k)

ϵ0
eik·xd3k

=

∫
Ĝ(k)

(
1

(2π)3/2

∫
ρ(x′)

ϵ0
e−ik·x′

d3x′
)
eik·xd3k

=

∫ (
1

(2π)3/2

∫
Ĝ(k)eik·(x−x′)d3k

)
ρ(x′)

ϵ0
d3x′

=

∫
G(x− x′)

ρ(x′)

ϵ0
d3x′ (3.7)

とかける。すなわち、グリーン関数 G(x) を用いて任意の ρ(x)に対してポアソン方程式の

解を書き表すことができた。(3.7)式を見ると、点 x′における密度 ρ(x′)の情報がグリーン

関数G(x−x′)によって点xまで伝えられるという形をしている。この状況を指してグリー

ン関数を伝搬（伝送）関数ということもある。

それでは、(3.5)式をフーリエ逆変換してグリーン関数G(x)を求めることにする。

G(x) =
1

(2π)3/2

∫
Ĝ(k)eik·xd3k

=
1

(2π)3

∫
eik·x

k2
d3k (3.8)

ここで kと xのなす角を θとし、k空間に極座標を導入すると、k · x = kr cos θ, d3k =

2πk2dkd cos θより

G(x) =
1

(2π)3

∫ 1

−1

∫ ∞

0

eikr cos θ

k2
2πk2dkd cos θ

=
1

(2π)2

∫ ∞

0

eikr − e−ikr

ikr
dk

=
1

(2π)2ir

∫ ∞

−∞

eikr

k
dk (3.9)

となる。ここで、第１式では cos θについての積分をまず行った。第３式では第２式で第二

項を k → −kと変数変換した。
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x
C

-R                                      -  R

C

Re k

Im k

FIG. 10: (3.9)式を計算するための周回積分の閉曲線 C

(3.9)式を計算するために複素関数の留数計算を使う。即ち、kを複素数に拡張し、複素

平面で留数を（r > 0なので上半面で）計算する。しかしながら、(3.9)式の極は積分路の実

軸上 k = 0にあるので、このままでは留数計算できない。そこで、図 10のように原点周り

に半径 ϵの半円 Cϵ を経由する閉曲線 C をとり、あとで ϵ→ 0, R → ∞とする。すると、

0 =

∮
C

eikr

k
dk =

∫ −ϵ

−∞

eikr

k
dk +

∫
Cϵ

eikr

k
dk +

∫ ∞

ϵ

eikr

k
dk (3.10)

より、半径 ϵの半円の寄与から (3.9)式の積分は iπとなる。したがって、

G(x) = iπ
1

(2π)2ir
=

1

4πr
(3.11)

となる。(3.7)式に代入して、結局、ポアソン方程式の解は

Φ(x) =
1

4πϵ0

∫
ρ(x′)

|x− x′|
d3x′ (3.12)

と表される。6

(3.12)式の意味は分かりやすい。位置x′の微小領域 d3x′に含まれる電荷 ρ(x′)d3x′が位置

xに及ぼす静電ポテンシャルは dΦ(x) = ρ(x′)d3x′/(4πϵ0|x − x′|)であるから、これをすべ

ての電荷分布について足し合わせたものが (3.12)式となる。

6 一般解は、∇2Φ = 0の解 Φ0(x)との重ね合わせで与えられる。
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留数定理とその実定積分への応用のまとめ� �
ここで、留数定理とその実定積分への応用について、結果だけまとめておく。詳しくは

複素関数の教科書を参照されたい。

留数定理 複素関数 f(z)が複素平面内の閉曲線 C の内部に特異点 z1, z2, . . . , zn をもち、

これらの点を除けば C が囲む領域で正則で C 上で連続であるとき、f(z) の周回積分は∮
C

f(z)dz = 2πi
n∑

k=1

Resf(zk)

で与えられる。

実定積分への応用 実関数 f(x) は |x| が大きいときには分母の次数が分子の次数より 1

以上大きいものとする。このとき、定積分
∫∞
−∞ f(x)eiaxdx は被積分関数を複素関数に拡

張し、a > 0(a < 0) のときには複素平面の上半面 (下半面)の f(z) の留数の和により、

∫ ∞

−∞
f(x)eiaxdx =

 2πi
∑

k Res[f(z)e
iaz]z=zk (Imzk > 0 if a > 0)

−2πi
∑

k Res[f(z)e
iaz]z=zk (Imzk < 0 if a < 0)

(3.13)

と与えられる。� �
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もちろん、力ずくで (3.12)式がポアソン方程式 (3.1)式に従うことを示すこともできる。

∇2演算子は変数 xに作用していることに注意すると、(3.12)式から

∇2Φ(x) =
1

4πϵ0

∫
∇2

(
1

|x− x′|

)
ρ(x′)d3x′

= − 1

ϵ0

∫
δ(x− x′)ρ(x′)d3x′

= −ρ(x)
ϵ0

(3.14)

となる。ここで第 2式では

∇2

(
1

r

)
= −4πδ(x) (3.15)

を使った。(3.15)式を用いれば、(3.3)式の解が (3.11)式となることもすぐわかる。

3–2. ポアソン方程式の例

これまで、静電ポテンシャルについて、その解の構成法についてみてきたが、ポアソン

方程式に従う他の物理例としては、質量密度 ρ(x)を持った物体が及ぼす重力ポテンシャル

ϕ(x)がある。

∇2ϕ(x) = 4πGρ(x) (3.16)

ここでGは万有引力（ニュートン）定数。質点M の場合は ϕ(x) = −GM/rであり、一般

の質量分布 ρ(x)に対しては先ほどと同様の手続きにより

ϕ(x) = −G
∫

ρ(x′)

|x− x′|
d3x′ (3.17)

と求まる。微小領域 d3x′の質量 ρ(x′)d3x′を考えれば、式の意味も静電ポテンシャルの場合

と同様に理解できる。

参考文献

• 「物理とフーリエ関数」(今村勤）

• 「物理とグリーン関数」(今村勤）
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4. 偏微分方程式：熱伝導方程式

4–1. 熱伝導方程式

熱が伝わる速さを記述する方程式（熱伝導方程式）について考えてみよう。我々は経験

的に熱は温度の高いほうから低いほうへ流れるし、温度差が大きいほうが熱は速く伝わると

いうことを知っている。そこで、熱が伝わる速さに関する次のフーリエの法則と呼ばれる経

験則を用いる：「各点で熱が伝わる速さ（熱量の変化率）は温度勾配に比例する」

以下では、フーリエの法則を式で表してみる。

まず、簡単のために 1次元で考える。つまり熱が伝わる方向は 1方向 (x軸とする）のみの

場合を考える。各点における温度を T (t, x)、物質の質量密度を ρ(t, x)、比熱（単位質量の物

質を単位温度上げるのに必要な熱量）を cとし、物質は棒状としてその断面積を Sとする。

棒の位置 xと x+∆xの間にある微小物質の熱量の変化を考えよう (図 11参照)。

x                                         x+x

FIG. 11: 1次元棒状物質における熱の流れ

時間∆tの間に、微小物質の外側の位置 x+∆xの断面から微小物質に入ってくる熱量は、

温度勾配（フーリエの法則）と断面積と時間に比例する。温度勾配は (∂T/∂x)x+∆xであり、

勾配が正ならば温度の高い外側から内側へ熱が入ってくることになる。比例係数を λ(> 0)

として入ってくる熱量は λ(∂T/∂x)x+∆xS∆tとなる。同様に考えると、内側の位置 xの断面

から微小物質に「入ってくる」熱量は−λ(∂T/∂x)xS∆tとなる。したがって、∆tの間に全

体として増えた熱量は{
λ

(
∂T

∂x

)
x+∆x

− λ

(
∂T

∂x

)
x

}
S∆t ≃ λ

∂2T

∂x2
∆x S∆t (4.1)

となる。ここで∆xが小さいとしてテイラー展開を行った。一方、∆tの間に微小物質の温

度が∆T 上昇したとすると、xと x+∆xの間の質量は ρS∆x であるから、増えた熱量は比
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熱を用いて

cρS∆x∆T (4.2)

となる。この 2式は等しいはずであるから、cρS∆x∆T = λ∂2T
∂x2 ∆x S∆t。ここで時間間隔 ∆t

が小さい極限をとり、

∂T

∂t
− λ

cρ

∂2T

∂x2
= 0 (4.3)

となる。これが熱伝導方程式と呼ばれる熱（温度）の空間時間変化を記述する微分方程式で

ある。比例係数 λは物質によって決まる係数であり、熱伝導係数という。

FIG. 12: 3次元における熱の流れ

次に、3次元の場合の熱伝導方程式を導出する。位置 xにある、表面積 dS体積 dV の微

小領域を考える (図 12参照)。温度勾配 (gradient) ∇T の向きは温度の高くなる方向を向い

ているから、−∇T が熱の入る向きである。時間∆tの間に、微小領域に表面を通じて入っ

てくる熱量は

λ∆t

∫∫
(−n) · (−∇T )dS = λ∆t

∫∫
n · ∇TdS = λ∆t

∫∫∫
∇2TdV . (4.4)

ここで、nは表面 dSの法線方向 (外向き)の単位ベクトルであり、最後の式ではガウスの公

式を用いて体積積分に書き換えた。一方、温度上昇を∆T とすると、増えた熱量は比熱を用

いて

∆T

∫∫∫
cρdV (4.5)

となる。この 2式を等しいとして、∆t→ 0の極限を取ると

∂T

∂t
− λ

cρ
∇2T = 0 (4.6)

となる。
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4–2. フーリエ変換

それでは、簡単のため ρは定数とし、t = 0の温度分布が T (0, x) = f(x)と与えられて

いるとき、(4.3)式を解いて t > 0の温度分布はどのように変化するか、みてみる。以後、

λ/cρ = Dとおく。(4.3)式をフーリエ変換すると

∂T̂ (t, k)

∂t
= −Dk2T̂ (t, k) (4.7)

となる。t = 0で T̂ (0, k) = A(k)として、一般解は

T̂ (t, k) = A(k)e−Dtk2 (4.8)

となるが、A(k) = T̂ (0, k)は T (0, x) = f(x)のフーリエ変換 f̂(k)であるから、結局

T̂ (t, k) = f̂(k)e−Dtk2 (4.9)

と書ける。これをフーリエ逆変換して T (t, x) は

T (t, x) =
1√
2π

∫ ∞

−∞
T̂ (t, k)eikxdk

=
1√
2π

∫ ∞

−∞
f̂(k)e−Dtk2eikxdk

=
1√
2π

∫ ∞

−∞

(
1√
2π

∫ ∞

−∞
f(x′)e−ikx′

dx′
)
e−Dtk2eikxdk

=
1

2π

∫ ∞

−∞

(∫ ∞

−∞
e−Dtk2+ik(x−x′)dk

)
f(x′) dx′

=
1

2π

∫ ∞

−∞

(∫ ∞

−∞
e
−Dt

(
k− i(x−x′)

2Dt

)2

e−
(x−x′)2

4Dt dk

)
f(x′) dx′

=
1

2π

∫ ∞

−∞
f(x′)e−

(x−x′)2
4Dt

√
π

Dt
dx′ (4.10)

と求まる。ここで最後の式でガウス積分の公式∫ ∞

−∞
e−ax2

dx =

√
π

a
(4.11)

(a > 0)を用いた。(4.10)式が初期の温度分布が T (0, x) = f(x)で与えられたときの t > 0で

の温度分布を表している。

レポート課題 1� �
(4.11)式を導出しなさい。解答はノートに手書きし（ノートの上に学生番号・氏名を明

記）、次回の講義時に提出しなさい。� �
36



x

T(t,x)

FIG. 13: 温度分布の時間変化

時間とともに温度分布がどのように変化するかをみるために、初期に原点 x = 0に無限大

の温度が集中している場合 f(x) = Aδ(x) を考えてみる (Aは定数)。このとき、(4.10) 式は

T (t, x) =
A

2π
e−

x2

4Dt

√
π

Dt
(4.12)

となる。つまり、温度のピークは時間とともに 1/
√
tで減少し、温度分布の幅は

√
4Dtで広

がっていくのである。図 13に (4.12)式の時間的なふるまいを示した。

レポート課題 2� �
初期温度分布が T (0, x) = f(x) = T0e

− x2

2σ2 のときの温度分布 T (t, x)を求めなさい。解答

はノートに手書きし（ノートの上に学生番号・氏名を明記）、次回の講義時に提出しな

さい。� �
4–3. 熱源がある場合

つぎに、（通常そうであるように）熱源がある場合に熱伝導方程式を拡張しておく。単位

体積当たりの熱発生率を q(t,x)とすると、(4.4)式は

λ∆t

∫∫∫
∇2TdV +∆t

∫∫∫
qdV (4.13)

と変更されるから、熱伝導方程式は、次のように変更される:

∂T

∂t
− λ

cρ
∇2T =

q

cρ
. (4.14)
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4–4. 熱伝導方程式の例

熱伝導方程式 (4.6)式の形になる他の物理例としては、粒子の拡散方程式がある。水の中

へインクを垂らした時のインクの伝わり方を見るとわかるように、インクはだんだん水全

体に広がる。また、インクの濃度が濃いほど広がる速さは早い。この事情は温度の伝わり方

のフーリエの法則と同じである。すなわち、「粒子が拡散する速さは数密度の勾配に比例す

る」。数密度を n(t,x)として、このことを数式で表現すると、比例係数をDとして

d

dt

∫ ∫ ∫
ndV =

∫ ∫ ∫
∂n

∂t
dV

=

∫ ∫
Dn · ∇ndS

=

∫ ∫ ∫
D∇2ndV (4.15)

ここで法線ベクトル n と粒子数密度 nを混同しないように注意されたい。したがって、

∂n

∂t
−D∇2n = 0 (4.16)

をえる。これが拡散方程式という。Dは拡散係数と呼ばれる。熱伝導方程式と形は同じなの

で、粒子の広がり方は図 13のようになる。

もう一つ形が似ている方程式として、量子力学における Schrödinger方程式がある。波動

関数をΨ(t,x)、ハミルトン演算子をHとすると、

iℏ
∂Ψ

∂t
= HΨ (4.17)

であるが、ハミルトン演算子は運動量演算子pとポテンシャル V (x)によりH = p2

2m
+ V (x)

と書け、位置表示では、p = −iℏ∇と表されるので Schrödinger方程式は

iℏ
∂Ψ

∂t
=

(
− ℏ2

2m
∇2 + V (x)

)
Ψ (4.18)

となる。ポテンシャル項を除けば、熱伝導方程式と同じ形をしている。

参考文献

• 「物理とフーリエ関数」(今村勤）

• 「物理とグリーン関数」(今村勤）
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5. 偏微分方程式：波動方程式

さて、次に波の伝播を表す波動方程式について考える。

5–1. 弦の振動

一例として、弦を伝わる振動についてみてみる。弦の線密度 (単位長さ当たりの質量)を

λ、張力をT とする。水平に張られた状態の弦を指ではじいた状況を考えよう。水平方向に x

軸をとり、位置 xでの垂直方向の弦の変位を ξ(t, x)とする（図 14)参照。xと x+ dxの間の

 

 

 

    ξ 

 𝑥                  𝑥 + 𝑑𝑥           𝑥 
 

T 
T 

FIG. 14: 弦の間隔 (x, x+ dx)での変位と張力

微小間隔の弦に着目し、この微小弦に働く力を考える。弦の両端に張力 T が働いているが、

微分 ∂ξ/∂xは x軸となす角の tangentであることを思い起こすと、張力の変位方向 (ξ 方向)

の成分は x+ dxでは (∂ξ/∂x)x+dxT、xでは−(∂ξ/∂x)xT である。微小弦の質量は λdxであ

るから、微小弦の変位方向の運動方程式（弦の重力は張力に比べて無視できるとする）は

λdx
∂2ξ

∂t2
=

(
∂ξ

∂x

)
x+dx

T −
(
∂ξ

∂x

)
x

T

=
∂2ξ

∂x2
dxT (5.1)

となる。ここで第 2式では dxを微小としてテイラー展開を行った。したがって、

∂2ξ

∂t2
− T

λ

∂2ξ

∂x2
= 0 (5.2)

となる。この微分方程式を（1次元）波動方程式という。
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5–2. １次元波動方程式の一般解

1次元波動方程式は一般的に解くことができる。そのために、V =
√
T/λとおき、微分

演算子が (
∂2

∂t2
− V 2 ∂

2

∂x2

)
=

(
∂

∂t
+ V

∂

∂x

)(
∂

∂t
− V

∂

∂x

)
(5.3)

と「因数分解」できることに着目し、次のような変数変換をしてみる。

u = x− V t

v = x+ V t

このとき、

∂

∂t
=

∂u

∂t

∂

∂u
+
∂v

∂t

∂

∂v
= V

(
− ∂

∂u
+

∂

∂v

)
(5.4)

∂

∂x
=

∂u

∂x

∂

∂u
+
∂v

∂x

∂

∂v
=

∂

∂u
+

∂

∂v
(5.5)

となるから、(5.2)式は(
∂2

∂t2
− V 2 ∂

2

∂x2

)
ξ =

(
−2V

∂

∂v
2V

∂

∂u

)
ξ = −4V 2 ∂2ξ

∂v∂u
= 0 (5.6)

と書き換えられる。uと vについては 1階の微分方程式なので、各変数について積分すれば

解が求められる。まず、(5.6)式を vについて積分すると、

∂ξ

∂u
= F (u) (5.7)

となる。ここで逆に (5.7) 式を vについて偏微分するとゼロになるはずなので、右辺には一

般には積分定数ではなく u の任意関数 F (u) が現れる。さらに (5.7) 式を uについて積分す

ると、同様にして積分定数の代わりに vについての任意関数 g(v)を用いて

ξ(u, v) =

∫
F (u)du+ g(v) ≡ f(u) + g(v) (5.8)

と書ける。ここで f(u) =
∫
F (u)duとした。元の変数 t, xを用いると

ξ(t, x) = f(x− V t) + g(x+ V t) (5.9)

となる。これが 1次元波動方程式の一般解である。任意関数 f, gは初期条件により決まる。

f(x− V t)は初期の波形 f(x)を時刻 tに xの正の方向に V t平行移動させたもの、g(x+ V t)

は g(x)を xの負の方向に V t平行移動させたものである。つまり、1次元の波の進行方向は

±x方向のみ（当然ながら）であり、V は波形の進行速度に対応し、なおかつ 1方向の波形

f, gは全く変わらない、ということがわかる。V =
√
T/λを波の位相速度という。
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5–3. 音波

次の例として、音波を考えよう。音波は気体や液体中を伝わる密度の振動（疎密波）で

ある。そのために、まず気体や液体（総称して流体という）が従う方程式を導出する必要が

ある。そこで簡単のため、まず 1次元で考えてみる。

 

𝑥                 𝑥 + 𝑑𝑥 
 

𝑣(𝑡, 𝑥) 𝑣(𝑡, 𝑥 + 𝑑𝑥) 

𝑃(𝑡, 𝑥) 𝑃(𝑡, 𝑥 + 𝑑𝑥) 

FIG. 15: 1次元流体での流体の流れと流体素片に働く圧力

1. 流体方程式（１次元）

図 15のように x方向に伸びた管（断面積 S）を流れる流体を考え、管の位置 xと x+ dx

の間の流体に着目する。流体の質量密度を ρ(t, x)、圧力を p(t, x)、速度を v(t, x)とする。位

置 xと位置 x+ dxでの流体の速度は一般に異なるので xと x+ dxの間にあるの流体質量は

変化する。その変化率 ∂(ρSdx)/∂t は位置 x から速度 v(t, x) で入ってくる量と位置 x+ dx

から速度 v(t, x+ dx) で出ていく量から決まるから (図 15 参照)

∂ρ(t, x)

∂t
Sdx = ρ(t, x)v(t, x)S − ρ(t, x+ dx)v(t, x+ dx)S

= −∂ρ(t, x)v(t, x)
∂x

Sdx (5.10)

となる。第 2式では dx を微小としてテイラー展開した。したがって、

∂ρ(t, x)

∂t
+
∂ρ(t, x)v(t, x)

∂x
= 0 (5.11)

となる。この式を「連続の式」といい、質量保存（収支勘定のつり合い）を表した式である。
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次に流体に対する運動方程式を考える。そのためには運動量の変化率を考える必要があ

る。もちろん流体素片に働く圧力による力による運動量の変化率があるが、流体の場合は連

続の式の場合と同様に流体が流れることによる運動量の変化率も考慮しなくてはいけない。

まず、流体素片に働く圧力による力を考えると、位置 xにある断面を通じた圧力による力は

p(t, x)S、位置 x + dxでは−p(t, x + dx)Sである (図 15 参照)。今度は流速の違いによる運

動量の変化は (5.10)式の右辺で ρを ρvに変えればよいから、運動方程式は

∂ρ(t, x)v(t, x)

∂t
Sdx = p(t, x)S − p(t, x+ dx)S + ρ(t, x)v(t, x)2S − ρ(t, x+ dx)v(t, x+ dx)2S

= −∂p(t, x)
∂x

Sdx− ∂ (ρ(t, x)v(t, x)2)

∂x
Sdx (5.12)

となる（圧力に比べて重力は無視できるものとした）。したがって、

∂ (ρ(t, x)v(t, x))

∂t
+
∂ (ρ(t, x)v(t, x)2)

∂x
= −∂p(t, x)

∂x
(5.13)

となる。この式が流体の運動方程式であり、「オイラー方程式」という。連続の式 (5.11)式

を用いて ∂ρ/∂tを消去すると (5.13)式は次のように書き換えられる:

∂v

∂t
+ v

∂v

∂x
= −1

ρ

∂p

∂x
. (5.14)

2. 音波

それでは、流体を伝わる密度の微小振動を表す式を求めてみる。静止した状態の一様な

流体（密度 ρ0、圧力 p0、速度 v = 0）を考え、そこから微小に変化した状態

ρ = ρ0 + δρ

p = p0 + δp = p0 +

(
∂p

∂ρ

)
0

δρ

v = δv

が従う方程式を考える。ここで順圧 (barotropic)な状態方程式 p = p(ρ)を仮定した。する

と、微小量の１次のオーダーで連続の式 (5.11)とオイラー方程式 (5.13)式は

∂δρ

∂t
+ ρ0

∂δv

∂x
= 0 (5.15)

ρ0
∂δv

∂t
= −∂δp

∂t
= −

(
∂p

∂ρ

)
0

∂δρ

∂x
(5.16)

となる（ρ0, p0は定数であることに注意）。(5.15)式をもう一度時間微分し、(5.16)式を使っ

て、δvを消去すると、

∂2δρ

∂t2
−
(
∂p

∂ρ

)
0

∂2δρ

∂x2
= 0 (5.17)
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となる。すなわち、密度のゆらぎ δρは波動方程式に従うことがわかる。この場合の位相速度

cs =

√(
∂p

∂ρ

)
0

(5.18)

を音速（音波が伝わる速度）という。

3. 流体方程式（３次元）

最後に、一般の３次元の流体方程式を導出しておく。表面積 dS、体積 dV の微小領域を

考える。質量は ρdV、表面から流出する質量は単位時間当たり ρv · ndSだから、質量の時

間変化率は

d

dt

∫∫∫
ρdV =

∫∫∫
∂ρ

∂t
dV = −

∫∫
ρv · ndS = −

∫∫∫
∇ · (ρv)dV (5.19)

となる。ここでガウスの定理を用いて面積分を体積積分に直した。したがって、連続の式は

∂ρ

∂t
+∇ · (ρv) = 0 (5.20)

となる。次に、運動方程式を導くために運動量の i成分 (i = 1, 2, 3 としそれぞれ x 成分、y

成分、z 成分に対応させる) の変化に注目する。dV 内の運動量は ρvidV、表面から流れ出る

単位時間当たりの運動量は ρvi(v ·n)dS、表面から作用する圧力による力の i成分は−pnidS

であるから (法線ベクトル n は面の外向きであることに注意)、運動方程式は∫∫∫
∂ρvi

∂t
dV = −

∫∫
ρvi(v · n)dS −

∫∫
pnidS

= −
∫∫∫

∇ · (ρviv)dV −
∫∫∫

∂p

∂xi
dV (5.21)

となる。したがって、以下のような 3次元版のオイラー方程式が得られる:

∂(ρvi)

∂t
+∇ · (ρviv) = − ∂p

∂xi
. (5.22)

１次元の場合と同様、連続の式 (5.20)式を用いて ∂ρ/∂tを消去すると (5.22)式は

∂v

∂t
+ (v · ∇)v = −1

ρ
∇p (5.23)

と書き換えられる。また、密度揺らぎ δρが従う波動方程式は

∂2δρ

∂t2
−
(
∂p

∂ρ

)
0

∇2δρ = 0 (5.24)
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となることがわかる。

１次元の時は、１方向に進む波の波形は初期波形の単なる平行移動であり、（振幅も含め

て）形は全く変わらなかった。３次元ではどうであろうか。もし１次元と同じように振幅が

変わらないのであれば、音や光の強さはどれだけ離れても変わらないはずである。しかしこ

れは現実とは異なる。光や音の強さは逆２乗に比例して距離とともに減衰している。以下で

は、３次元波動方程式 (5.24)に従う波が音源からの距離 rとともにどのようにふるまうか解

いてみることを試みる。そのためには、ラプラス演算子∇2をデカルト座標 (x, y, z)ではな

く極座標 (r, θ, ϕ)で表す必要がある。これについては次章で扱う。

5–4. 電磁波

波動方程式 (5.24)式に従う物理例としては他に電磁波がある。真空中のMaxwell 方程式

を考える。電場E 磁場Bは次の方程式に従う (ϵ0は真空の誘電率、µ0は真空の誘電率):

∇ · E = 0 , (5.25a)

∇ ·B = 0 , (5.25b)

∇× E = −∂B
∂t

, (5.25c)

∇×B = ϵ0µ0
∂E

∂t
. (5.25d)

(5.25c)式の rotationをとると

∇× (∇× E) = ∇(∇ · E)−∇2E = −∂∇×B

∂t
(5.26)

となる。ここで、(5.25a)式と (5.25d)式を用いると

∂2E

∂t2
− 1

ϵ0µ0

∇2E = 0 (5.27)

となる。つまり、電場Eは波動方程式に従う波である。同様にして、(5.25d)式の rotation

から磁場Bも全く同じ波動方程式に従うことがわかる。電磁波の位相速度

c =
1

√
ϵ0µ0

(5.28)

を光速という。真空中における cの値は SI単位系で c = 2.99792458×108m/s ≃ 3×108m/s

と「定義」されている7。

7 なぜ「定義」されているのかといえば、「1m は真空中において光が 1/299792458 秒間に進む距離」と定め

られているからである。
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5–5. 波源のある場合の波動方程式とグリーン関数

ここで、波源のある場合について触れておく。揺らぎ (弦の変位や密度揺らぎ）を u(t,x)

と書くと波源 f(t,x) のあるときの波動方程式は

∂2u(t,x)

∂t2
− V 2∇2u(t,x) = f(t,x) (5.29)

という形になる。例えば、電荷密度 ρ、電流密度 JがあるときのMaxwell 方程式

∇ · E =
ρ

ϵ0
∇ ·B = 0

∇× E = −∂B
∂t

∇×B = µ0J+ ϵ0µ0
∂E

∂t

から、電場Eの従う方程式は波源のある波動方程式の形になる (磁場Bについても同様)：

∂2E

∂t2
− c2∇2E = − 1

ϵ0

(
∇(ρc2) +

∂J

∂t

)
. (5.30)

それでは、ポアソン方程式に対して行ったように、一般の波源関数 f(t,x)に対する波動

方程式の解をグリーン関数を用いることで構成してみる。(5.29)式のグリーン関数G(t,x)

は波源関数 f(t,x)をデルタ関数 δ(t)δ(x)で置き換えたときの波動方程式

∂2G(t,x)

∂t2
− V 2∇2G(t,x) = δ(t)δ(x) (5.31)

の解である。一般の波源関数に対して波動方程式 (5.29)の一般解はグリーン関数を用いて

u(t,x) =

∫ ∫
G(t− t′,x− x′)f(t′,x′)dt′d3x′ (5.32)

と表される。

ポアソン方程式の場合と同様に、フーリエ変換して求めていくわけであるが、ポアソン

方程式とは異なり、波動方程式には時間微分も含まれているので、時間変数に対するフーリ

エ変換を定義しておく必要がある。時間変数も含めたフーリエ変換を次のように定義する：

Ĝ(ω,k) =
1

(2π)2

∫ ∫
G(t,x)eiωt−ik·xdtd3x . (5.33)

逆フーリエ変換は

G(t,x) =
1

(2π)2

∫ ∫
Ĝ(ω,k)e−iωt+ik·xdωd3k (5.34)
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である ((2π)2 = (2π)4/2に注意)。空間変数の場合 (2.25)とは異なり、時間変数に関しては指

数関数の指数を逆符号で定義する。この定義は、相対論的場の量子論においてローレンツ不

変性を保つうえで重要であるが、ここでは詳しくは触れないことにする。

それでは、(5.31)式をフーリエ変換することにより Ĝ(ω,k) を求めると

Ĝ(ω,k) =
−1

(2π)2
1

ω2 − V 2k2
(5.35)

となるので、G(t,x)は

G(t,x) =
−1

(2π)4

∫ ∫
e−iωt+ik·x

ω2 − V 2k2
dωd3k (5.36)

と与えられる。まず ω 積分を、ω を複素数に拡張して複素平面での留数計算により行う。

t > 0 のときは複素平面の下半面で、t < 0 のときは複素平面の上半面で留数計算をすれば

よい。その際、(5.36)式の実軸上の極 ω2 = V 2k2 を避けるために、ω → ω ± iϵ (ϵ > 0) と

し、あとで ϵ→ 0 とする。つまり、

GR
A
(t,x) =

−1

(2π)4

∫ ∫
e−iωt+ik·x

(ω ± iϵ)2 − V 2k2
dωd3k (5.37)

を積分する。+ 符号 (GR)と − 符号 (GA)の場合に分けて ω 積分を行う。

遅延グリーン関数　

+ 符号のときのグリーン関数を GR(t,x) と書くことにする。+ 符号のとき、極は ω =

−iϵ ± V k で下半面にある (図 16参照)。 したがって、t < 0 のときは積分はゼロになり、

t > 0 のときのみ積分は値をもつ。t > 0 のとき、ω = −iϵ± V kでの留数を求めて積分する

と、積分の向きに注意して∫ ∞

−∞

e−iωt

(ω + iϵ)2 − V 2k2
dω = (−2πi)

(
e−iV kt

2V k
+

eiV kt

−2V k

)
(5.38)

となるから、(5.46)式は

GR(t,x) =
πi

(2π)4

∫ 1

−1

∫ ∞

0

e−iV kt − eiV kt

V k
eikr cos θ2πk2dkd cos θ

=
πi

(2π)3

∫ ∞

0

(e−iV kt − eiV kt)

V k

(eikr − e−ikr)

ikr
k2dk

=
1

8π2V r

∫ ∞

0

(e−ik(V t−r) − e−ik(V t+r) − eik(V t+r) + eik(V t−r))dk

=
1

8π2V r

∫ ∞

−∞
(eik(V t−r) − eik(V t+r))dk (5.39)
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x                   x

x                   x

t<0 t<0

t>0 t>0

FIG. 16: 遅延グリーン関数 (+符号)の場合の ωの極の位置と積分路（左図）、先進グリーン関数 (−

符号)の場合の極の位置と積分路（右図）

となる。ここで、第３式の第１項と第２項で k → −k と変数変換した。デルタ関数の表式

(2.18)を用いると

GR(t,x) =
1

4πV r
(δ(V t− r)− δ(V t+ r)) =

1

4πV 2r

(
δ
(
t− r

V

)
− δ

(
t+

r

V

))
(5.40)

となる。ここで

δ(ax) =
1

|a|
δ(x) (5.41)

を用いた。t > 0, r > 0であるから (5.40) の第 2項は消え、最終的に

GR(t,x) =

 1
4πV 2r

δ
(
t− r

V

)
(t > 0)

0 (t < 0)
(5.42)

をえる。このグリーン関数は t = r/V のみに値をもつ。つまり、(5.31)式において t = 0, r = 0

にある波源の情報が未来向き (t > 0)に r > 0 へ速度 V で伝わることを伝わることを表す解

であり (図 17 参照)、遅延 (retarded)グリーン関数と呼ばれる。

先進グリーン関数　
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r

t = r/V

t = -r/V

t

FIG. 17: 縦軸を時間方向、横軸を空間方向とした場合の遅延グリーン関数の情報伝達方向（上部）

と先進グリーン関数の情報伝達方向（下部）

次に、− 符号をとったときの ω 積分を行う。このときのグリーン関数を GA(t,x) と書く

ことにする。今度は極は上半面にある (ω = iϵ± V k)から、t > 0 のとき積分はゼロになり、

t < 0 のときのみ値をもつことになる (図 16参照)。複素平面上半面で留数計算を行うと、遅

延グリーン関数の場合と同様の計算により

GA(t,x) =
1

4πV 2r

(
δ
(
t+

r

V

)
− δ

(
t− r

V

))
(5.43)

となる。t < 0, r > 0であるから第 2項は消え

GA(t,x) =

 0 (t > 0)

1
4πV 2r

δ
(
t+ r

V

)
(t < 0)

(5.44)

をえる。このグリーン関数は、t = 0, r = 0にある波源の情報が過去向き (t < 0)に r > 0 へ

速度 V で伝わることを表す解であり (図 17 参照)、先進 (advanced)グリーン関数と呼ば

れる。

「原因があって結果が生じる」という因果律を採用して、以下では遅延グリーン関数を
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採用することにする。すると、一般解の表式 (5.32)式より、解は

u(t,x) =

∫ ∫
GR(t− t′,x− x′)f(t′,x′)dt′d3x′

=
1

4πV 2

∫ ∫ δ
(
t− t′ − |x−x′|

V

)
|x− x′|

f(t′,x′)dt′d3x′

=
1

4πV 2

∫ f
(
t− |x−x′|

V
,x′
)

|x− x′|
d3x′ (5.45)

となる。この解の意味も分かりやすい。ある時刻 t、位置xにおける波は、位置x′にある波

源から距離 |x−x′|を速さ V で伝わったものである。だから波源を時刻 t− |x−x′|/V に出

たものである。

ファインマングリーン関数

(5.36)式の極ω2 = V 2k2 を避けるために、分母を (ω± iϵ)2 −V 2k2 として複素積分を行っ

たが、以下のようにする処方もある:

GF (t,x) =
−1

(2π)4

∫ ∫
e−iωt+ik·x

ω2 − V 2k2 + iϵ
dωd3k (5.46)

ただし、ϵ > 0 とする。このときのグリーン関数をファインマン8グリーン関数という。ϵ は

微小量であるから ϵ/2V k を改めて ϵと書けば、ω 積分の極は ω = ±
√
V 2k2 − iϵ = ±V k(1−

iϵ/2V 2k2) = ±V k ∓ iϵ にある。したがって、t > 0 のときには極 V k − iϵ について、t < 0

のときには極 −V k + iϵ について留数積分を行えばよい (図 18)。結果は

G(t,x) =
−i

4π2V (V 2t2 − r2)
(5.47)

となる。ファインマングリーン関数は t > 0 のときには w = V k(> 0) (正の振動数) を、

t < 0 のときには w = −V k(< 0) (負の振動数)を積分で拾うことによってつくられた。すな

わち、正の振動数は「時間を順方向に」進み、負の振動数は「時間を逆行して」進む状況を

表している。一方、遅延（先進）グリーン関数では正の振動数も負の振動数も時間を順方向

（逆方向）に進む解である。また、遅延グリーン関数や先進グリーン関数とは異なり、ファ

8 Richard P. Feynman(1918-1988). アメリカの理論物理学者。量子力学の経路積分による定式化や電磁場を

量子化した理論である量子電磁力学 (quantum electrodynamics)の構築で知られている。量子電磁力学の発

展への寄与に対して、我が国の朝永振一郎やシュウィンガーとともに 1965年にノーベル物理学賞を受賞し

た。素粒子の反応を図式化して表現するファインマンダイアグラムでも知られている。ファイマンダイアグ

ラムにおいてはファインマングリーン関数が重要な役割を果たす。
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x
x                   

FIG. 18: t > 0のときの ωの積分路（左図）、t < 0の時の積分路（右図）

インマングリーン関数は複素数である。さらに、遅延（先進）グリーン関数は r = ±V t の

ときのみゼロでない値を持つのに対し、ファインマングリーン関数は波の伝搬方向以外にも

値を持つ。その意味でファインマングリーン関数は古典論では扱えない量子的な振舞いを示

すグリーン関数である。
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6. 直交曲線座標

ここでは、一般の直交曲線座標 (u, v, w)でのベクトルとその微分を考える。「直交曲線座

標」とは、座標一定面は曲がっているが互いの一定面どうしは直交しているような座標系の

ことを言う。極座標 (r, θ, ϕ)は一つの例である。(u, v, w)と (x, y, z)の対応関係（座標変換）

は与えられているものとし、u = u(x, y, z), x = x(u, v, w)などと書く。

まず、直交座標 (x, y, z)の時と同じように u, v, w方向の単位ベクトル eu, ev, ewを用意す

る。u の勾配 ∇u は u =一定面と直交していることから、u 方向の単位ベクトル eu は ∇u

に比例している。しかも∇uは uが増える方向を向いている。したがって、単位ベクトルは

∇uの大きさで割ればよい。つまり

eu =
1

|∇u|
∇u ≡ hu∇u . (6.1a)

ここで、hu = 1/|∇u|を導入した。ev, ewについても同様に

ev =
1

|∇v|
∇v ≡ hv∇v (6.1b)

ew =
1

|∇w|
∇w ≡ hw∇w (6.1c)

と書かれる。直交条件より、eu · ev = ev · ew = ew · eu = 0。hu, hv, hwはベクトルの微分を

直交曲線座標 (u, v, w)で表す時に重要になる。

6–1. ベクトルの成分表示

まず、ベクトルの成分表示の関係を書いておく。ベクトルAの (x, y, z)座標系での成分

を (Ax, Ay, Az)、(u, v, w)座標系での成分を (Au, Av, Aw)と書くと、Aは２通りに

A = Axex + Ayey + Azez

= Aueu + Avev + Awew

と表される。例えば、成分Auと (Ax, Ay, Az)との関係が知りたければ、A と eu との内積

を取れば

Au = A · eu = Ax(ex · eu) + Ay(ey · eu) + Az(ez · eu)

= Axhu
∂u

∂x
+ Ayhu

∂u

∂y
+ Azhu

∂u

∂z
(6.2)

と求まる。
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6–2. 勾配 (gradient)

それでは、ベクトルの微分の曲線座標表示についてみていく。はじめに、あるスカラー

関数 f(x, y, z) の勾配 (gradient) を (u, v, w) 座標の成分表示で書いてみる。f(x, y, z) =

f (x(u, v, w), y(u, v, w), z(u, v, w)) は (x, y, z)を通じて (u, v, w)の関数でもあるから

∇f =
∂f

∂x
ex +

∂f

∂y
ey +

∂f

∂z
ez

=

(
∂f

∂u

∂u

∂x
+
∂f

∂v

∂v

∂x
+
∂f

∂w

∂w

∂x

)
ex

+

(
∂f

∂u

∂u

∂y
+
∂f

∂v

∂v

∂y
+
∂f

∂w

∂w

∂y

)
ey

+

(
∂f

∂u

∂u

∂z
+
∂f

∂v

∂v

∂z
+
∂f

∂w

∂w

∂z

)
ex

=
∂f

∂u
∇u+ ∂f

∂v
∇v + ∂f

∂w
∇w (6.3)

となる。ここで、最後の式では∇u = (∂u/∂x)ex + (∂u/∂y)ey + (∂u/∂z)ezを用いた。単位

ベクトルの定義式 (6.1a)-(6.1c)式を用いれば、結局

∇f =
1

hu

∂f

∂u
eu +

1

hv

∂f

∂v
ev +

1

hw

∂f

∂w
ew (6.4)

となる。

6–3. 発散 (divergence)

つぎに、あるベクトル関数A = Aueu + Avev + Awewの発散 (divergence)を (u, v, w)座

標で計算する。∇ · A = ∇ · (Aueu + Avev + Awew)なので、まず∇ · (Aueu)を計算する。

eu = ev × ewと (6.1b,6.1c)式より

∇ · (Aueu) = ∇ · (Au(ev × ew))

= ∇ · (hvhwAu(∇v ×∇w))

= ∇(hvhwAu) · (∇v ×∇w) + hvhwAu {∇w · (∇×∇v)−∇v · (∇×∇w)}

= ∇(hvhwAu) ·
(

eu
hvhw

)
=

1

huhvhw

∂

∂u
(hvhwAu) (6.5)

となる。ここで第３式では公式∇ · (B×C) = C · (∇×B)−B · (∇×C) を用い、第４式で

は∇×∇v = 0、最後の式では勾配の公式 (6.4)式を用いた。∇ · (Avev),∇ · (Awew)も同様
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に計算できるので、結局

∇ ·A =
1

huhvhw

(
∂

∂u
(hvhwAu) +

∂

∂v
(hwhuAv) +

∂

∂w
(huhvAw)

)
(6.6)

となる。

6–4. 回転 (rotation)

つぎに、ベクトル関数Aの回転 (rotation) ∇×A = ∇× (Aueu + Avev + Awew) を計算

する。先ほどと同様に∇× (Aueu)をまず計算する。(6.1c)式と (6.4)式より

∇× (Aueu) = ∇× (huAu∇u)

= ∇(huAu)×∇u+ huAu(∇×∇u)

=

(
1

hu

∂huAu

∂u
eu +

1

hv

∂huAu

∂v
ev +

1

hw

∂huAu

∂w
ew

)
×
(

1

hu
eu

)
=

1

hwhu

∂

∂w
(huAu)ev −

1

huhv

∂

∂v
(huAu)ew (6.7)

となる。他も同様に計算して、結局

∇×A =
eu
hvhw

(
∂

∂v
(hwAw)−

∂

∂w
(hvAv)

)
+

ev
hwhu

(
∂

∂w
(huAu)−

∂

∂u
(hwAw)

)
+

ew
huhv

(
∂

∂u
(hvAv)−

∂

∂v
(huAu)

)
(6.8)

となる。

6–5. ラプラス演算子

最後に、ラプラス演算子の曲線座標表示を計算する。∇2f = ∇ · (∇f)なので発散の公式

(6.6)のベクトル A に勾配∇f (6.4)を代入すればよい。結果は

∇2f =
1

huhvhw

(
∂

∂u

(
hvhw
hu

∂f

∂u

)
+

∂

∂v

(
hwhu
hv

∂f

∂v

)
+

∂

∂w

(
huhv
hw

∂f

∂w

))
(6.9)

となる。
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6–6. 極座標



(x,y,z)



x

y

z

r

FIG. 19: 極座標

それでは 1例として極座標 (r, θ, ϕ)（図 19参照）で∇2f を書き下してみる。そのために

はまず hr, hθ, hϕを計算する必要がある。直交座標 (x, y, z)と極座標 (r, θ, ϕ)の関係

x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ

から導かれる

r =
√
x2 + y2 + z2, tan θ =

√
x2 + y2

z
, tanϕ =

y

x

より、∇ tan θ = ∇θ/ cos2 θ などから

∇r = xex + yey + zez
r

=
r

r
(6.10a)

∇θ = z

r2
√
x2 + y2

(xex + yey)−
√
x2 + y2

r2
ez (6.10b)

∇ϕ =
x2

x2 + y2

(
1

x
ey −

y

x2
ex

)
(6.10c)

となる。したがって、ノルムは

|∇r| = 1, |∇θ| = 1

r
, |∇ϕ| = 1

r sin θ
(6.11)

となり、hr, hθ, hϕは

hr = 1, hθ = r, hϕ = r sin θ (6.12)
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と与えられることが分かる。hr, hθ, hϕが決まれば、あとは先に導出した公式より、例えば

∇2f =
1

r2 sin θ

(
∂

∂r

(
r2 sin θ

∂f

∂r

)
+

∂

∂θ

(
sin θ

∂f

∂θ

)
+

∂

∂ϕ

(
1

sin θ

∂f

∂ϕ

))
=

1

r2
∂

∂r

(
r2
∂f

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

r2 sin2 θ

∂2f

∂ϕ2
(6.13)

となる。

(x,y,z)



x

y

z

r

z

FIG. 20: 円筒座標
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6–7. 球面波

それでは、３次元波動方程式 (5.24)に従う波が音源からの距離 rとともにどのようにふ

るまうか、考えてみることにする。音源が点状だとして、そこから放射状に発せられる音の

伝播を考える。どの方向にも同じ強度で発せられるとすると (球対称)、音の伝播は方向に

は依らないはずであるから、密度の揺らぎは原点からの距離（と時間）のみの関数である

δρ(t, r)。ラプラス演算子 (6.13) で θ, ϕの微分の項は消えるので、波動方程式 (5.24)は

∂2δρ

∂t2
− c2s

1

r2
∂

∂r

(
r2
∂δρ

∂r

)
= 0 (6.14)

となる。ここで、動径方向の微分は

1

r2
∂

∂r

(
r2
∂δρ

∂r

)
=

1

r

∂2(rδρ)

∂r2
(6.15)

と書き換えられることを使うと、波動方程式は

∂2(rδρ)

∂t2
− c2s

∂2(rδρ)

∂r2
= 0 (6.16)

となる。つまり、rδρは１次元波動方程式 (5.2),(5.17)と全く同じ形の方程式に従うことがわ

かる。したがって、２つの任意関数 f, gを用いて、一般解は

δρ =
f(r − cst) + g(r + cst)

r
(6.17)

と表されることがわかる。１次元と同様、f(r − cst)は原点から外側に球状に広がっていく

波（外向波）、g(r+ cst)は原点方向に向かってくる波（内向波）を表している。これを球面

波という。１次元と違って、振幅は 1/rで距離とともに減衰する。波の強度は振幅の２乗に

比例するので、1/r2で減衰することがわかる。
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7. 固有（基準）振動

つぎに、「音階」を決める条件について考えてみる。弦を張ったギターや琴の音は弦の長

さや張り具合によって決まる。このことを、境界条件を満たす波動方程式の解の条件から考

えてみる。

7–1. 弦の固有振動

まず、弦の振動を考えよう (5 5–1節)。弦の線密度 λ、張力 T に対し、V =
√
T/λとおく

と、弦の変位を ξ(t, x)は

∂2ξ

∂t2
− V 2 ∂

2ξ

∂x2
= 0 (7.1)

に従うのであった。

弦の長さは Lとし、弦の両端は固定されているとする:

ξ(t, 0) = ξ(t, L) = 0. (7.2)

この境界条件を満たす弦の音（波動方程式の解）を構成しよう。そのために、ξ(t, x) =

T (t)X(x)としてみる（変数分離形）と、波動方程式は

X
d2T

dt2
− V 2T

d2X

dx2
= 0 (7.3)

と常微分方程式の和になる。TXで割ると、

1

T

d2T

dt2
− V 2

X

d2X

dx2
= 0 (7.4)

と書ける。第１項は tの関数で、第２項は xの関数であるから、どんな時刻 t や場所 x でも

この式が成り立つのは各々が定数の場合しかありえない。したがって、定数K （分離定数

という）に対して

1

T

d2T

dt2
= K =

V 2

X

d2X

dx2
(7.5)

となる。ここで、もしK > 0とすると、(7.5)第２式を解いてX(x) = C1e
√
Kx/V +C2e

−
√
Kx/V

となるが、指数関数では境界条件 (7.2) を満たさない。そこで、実数 ω(> 0) を用いて K ≡

−ω2 と書き、(7.5)第１式を解くと

T (t) = A′ sinωt+B′ cosωt ≡ A sin(ωt+ α). (7.6)
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をえる。また、第２式を境界条件X(0) = 0を使って解くと、X(x) = sin
(
ω
V
x
)
となるが、さ

らにX(L) = 0 より、ωは正の整数 nに対し

ω =
nπV

L
≡ ωn (7.7)

という離散的な値のみが許されることになる。(7.6)式からわかるように、弦の位置 xは各

n に対して ωnの振動数で振動している。ωnを弦の固有（基準）振動数という。n = 1, 2, . . .

と大きくなるにつれて振動数ωnは大きくなる（音が高くなっていく）。また、各固有振動数

ωnに対応する波動方程式の解

ξn(t, x) = An sin(ωnt+ αn) sin
(nπx
L

)
(7.8)

を固有（基準）振動解という。ξ(t, x) = 0となる位置 xを節という。n とともに節の数が増

えることがわかる。一般解は固有振動解の重ね合わせ（和音）であるから

ξ(t, x) =
∞∑
n=1

An sin(ωnt+ αn) sin
(nπx
L

)
(7.9)

となる。図 21 に n = 1, 2, 3に対して固有振動の波形のプロファイルを示した。

x

n=1

n=2

n=3

FIG. 21: n = 1, 2, 3に対する固有振動の波形
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7–2. 矩形膜の固有振動

FIG. 22: 膜の変位と張力

1. 膜の波動方程式

次に、膜の振動を考えよう。膜を特徴づける物理量はまず膜の面密度 (単位面積当たりの

質量)σである。また、幅の広いゴムを考えると分かるように、同じ材質のゴムでも幅が広

くなればなるほど張力は強くなる。したがって、膜の張力として重要な物理量は単位幅あた

りの張力 Sである。

水平に張られた膜をたたく状況を考える。水平方向に x, y軸、膜の変位方向に z軸を取

る。図 22のように、膜の微小領域ABCD (x, y) ∼ (x+∆x, y +∆y) に着目し、この微小膜

に働く張力を考える。まず、x軸に垂直な幅∆yの辺 AB,CDに働く張力の変位方向 zの成

分は、弦のときと同じように考えて

S∆y

((
∂z

∂x

)
x+∆x

−
(
∂z

∂x

)
x

)
= S∆y∆x

∂2z

∂x2
(7.10)

となり、辺BC,ADに働く力の z成分も同様に

S∆x∆y
∂2z

∂y2
(7.11)
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となる。したがって、微小膜の運動方程式は

σ∆x∆y
∂2z

∂t2
= S∆x∆y

(
∂2z

∂x2
+
∂2z

∂y2

)
(7.12)

となり、膜の従う波動方程式は

∂2z

∂t2
− S

σ

(
∂2z

∂x2
+
∂2z

∂y2

)
= 0 (7.13)

となる。V =
√
S/σが位相速度である。第 2項の空間微分はもちろん 2次元のラプラス演算

子である。

2. 固有振動

それでは、縦横 a, bの矩形に張られた膜

z(t, 0, y) = z(t, a, y) = z(t, x, 0) = z(t, x, b) = 0 (7.14)

という境界条件を満たす、波動方程式 (7.13)式の解を求めよう。弦のときと同じように、変

数分離形を考える。

z(t, x, y) = X(x)Y (y) sin(ωt+ α) (7.15)

ここで、時間方向は分離定数ωを想定して単振動解を導入しておいた。このとき、波動方程

式 (7.13)は

−ω2XY − V 2

(
Y
d2X

dx2
+X

d2Y

dy2

)
= 0 (7.16)

となり、両辺を V 2XY で割ると

1

X

d2X

dx2
= − 1

Y

d2Y

dy2
− ω2

V 2
(7.17)

となる。(7.17)式の左辺は xの関数、右辺は yの関数であるから、等式が成り立つというこ

とはどちらも定数である。境界条件 (7.14)を念頭に分離定数を−µ2とおくと、

1

X

d2X

dx2
= −µ2 (7.18a)

1

Y

d2Y

dy2
= −ω2

V 2
+ µ2 ≡ −k2 + µ2 (7.18b)

となる。ここで k = ω/V とした。これらを境界条件X(0) = 0, Y (0) = 0のもとで解くと、

X(x) = sinµx, Y (y) = sin
(√

k2 − µ2 y
)
となる。さらに残りの境界条件X(a) = 0, Y (b) = 0
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を課すと sinµa = 0, sin
(√

k2 − µ2 b
)

= 0 が要請される。すなわち、正の整数m,nを用

いて、

µa = mπ,
√
k2 − µ2b = nπ (7.19)

これを ω = kV について解くと、

ω = πV

√(m
a

)2
+
(n
b

)2
≡ ωmn (7.20)

という、離散的な振動数 ω（固有振動数）のみが解として許されることになる。対応する固

有振動解は

zmn(t, x, y) = Amn sin
mπx

a
sin

nπy

b
sin(ωmnt+ αmn) (7.21)

である。図 23 にm = 1, 2, n = 1, 2, 3に対して固有振動解のプロファイルを濃淡図にして示

した。

m=1,n=1 m=1,n=2 m=1,n=3

m=2,n=1 m=2,n=2 m=2,n=3

FIG. 23: 矩形膜の固有振動解のプロファイル
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7–3. 円形膜の固有振動

次に、円形に張られた膜：r =
√
x2 + y2 = r0 で z = 0 という境界条件を満たす波動方程

式の解を考えたい。ところが、円形の境界条件に対してx, y座標で表された波動方程式 (7.13)

は明らかに不便である。そこで、波動方程式を 2次元極座標 r, ϕ (x = r cosϕ, y = r sinϕ)を

使って書き換える。この変換は、以前 6章「直交曲線座標」の課題で扱った円筒座標の結果

を用いればよい。波動方程式 (7.13)は

∂2z

∂t2
− S

σ

(
∂2z

∂r2
+

1

r

∂z

∂r
+

1

r2
∂2z

∂ϕ2

)
= 0 (7.22)

となる。

それでは、境界条件

z(t, r = r0, ϕ) = 0 (7.23)

のもとでの固有振動解を求めよう。変数分離形 z(t, r, ϕ) = R(r)Φ(ϕ) sin(ωt + α) を仮定し、

波動方程式に代入し変形すると

1

Φ

d2Φ

dϕ2
= −k2r2 − r2

R

(
d2R

dr2
+

1

r

dR

dr

)
(7.24)

となる。ここで V =
√
S/σ とし、k = ω/V と書いた。左辺右辺とも定数となるので、分離

定数−µ2を導入して、左辺は

1

Φ

d2Φ

dϕ2
= −µ2 (7.25)

となり、これを解くとΦ(ϕ) = cos(µϕ+ β)となる。Φ(ϕ)はΦ(ϕ+2π) = Φ(ϕ) を満たさなく

てはいけないので、µ = m (m はゼロ以上の整数)であることが要請される。また、円形境

界ではどこを ϕ = 0ととるかは全く任意なので、β = 0としてよい。このとき、(7.24)式は

d2R

dr2
+

1

r

dR

dr
+

(
k2 − m2

r2

)
R = 0 (7.26)

となる。この微分方程式の解はベッセル関数で表される。

(7.26)式の解で原点で有界なものは第 1種ベッセル関数 Jm を用いて R(r) = Jm(kr)とな

る。境界条件 (7.23)を満たすには、Jm(x)のゼロ点を kr0ととればよい。m ̸= 0 に対して、

原点 x = 0は Jm(x)のゼロ点であり、J0(x)だけは原点でゼロではない（図 24参照）。そこ

で、Jm(x)の原点から数えてn番目のゼロ点を xmnと書くと (m ̸= 0のときは x = 0はn = 0

番目のゼロ点と数えることにする)、kr0 = xmn、つまり

ω =
V xmn

r0
≡ ωmn (7.27)
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J1(x)

J2(x)
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FIG. 24: 第 1種ベッセル関数の振る舞い

が固有振動数になる。固有振動解は

zmn(t, r, ϕ) = AmnJm(kr) cosmϕ sin(ωmnt+ αmn) (7.28)

である。図 25にm = 0, 1, n = 1, 2, 3 の固有振動解のプロファイルを示した。

m=0,n=1 m=0,n=2 m=0,n=3

m=1,n=1 m=1,n=2 m=1,n=3

FIG. 25: 円形膜の固有振動解のプロファイル
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ベッセル関数

一般に、ν(≥ 0)を実数として、2階の常微分微分方程式

d2H

dx2
+

1

x

dH

dx
+

(
1− ν2

x2

)
H = 0 (7.29)

をベッセル微分方程式、その解 H(x)をベッセル関数という（ベッセル微分方程式で ν =

m,x = krとすれば (7.26)式になる）。ベッセル微分方程式の解を冪級数展開の形

H(x) = xα
∞∑
k=0

akx
k . (7.30)

に仮定し、(7.29) に代入すると

0 =
∑
k=0

(k + α)(k + α− 1)akx
k+α−2 +

∑
k=0

(k + α)akx
k+α−2 +

∑
k=0

akx
k+α − ν2

∑
k=0

akx
k+α−2

=
∑
k=0

(k + α)(k + α− 1)akx
k+α−2 +

∑
k=0

(k + α)akx
k+α−2 +

∑
k=2

ak−2x
k+α−2 − ν2

∑
k=0

akx
k+α−2

となる。x の同じ冪の係数をゼロとして

(α2 − ν2)a0 = 0 (7.31)(
(α + 1)2 − ν2

)
a1 = 0 (7.32)

ak = − 1

k2 + 2αk + α2 − ν2
ak−2 (7.33)

となる。第 1式は xα−2 から、第 2式は xα−1 から、第 3式はそれ以外の xk+α−2 (k ≥ 2) か

らえられる。

(7.31) より、α = ±ν ととれば、(7.32) から a1 = 0 となり、(7.33) から奇数番の係数

a2k+1 = 0 となり解は H(x) =
∑

k a2kx
2k±ν の形になる。(7.33) の漸化式を解くと

a2k = − 1

4k(k + α)
a2k−2 =

(
− 1

4k(k + α)

)(
− 1

4(k − 1)(k − 1 + α)

)
a2k−4 = . . .

=
(−1)k

4kk(k − 1) . . . 1(k + α)(k − 1 + α) . . . (α + 1)
a0 =

(−1)kΓ(α + 1)

22kk!Γ(k + α + 1)
a0 (7.34)

となる。つまり、展開係数 a2k は a0 で決まることになる。

ここで z > 0 (z が複素数の場合は Rez > 0)で定義されているガンマ関数

Γ(z) =

∫ ∞

0

e−ttz−1dt (7.35)

を導入した。部分積分すればわかるように Γ(z+1) = zΓ(z)である。(7.34) 式では、この関

係を繰り返して

Γ(k + α + 1) = (k + α)(k − 1 + α) . . . (α + 1)Γ(α + 1) (7.36)
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となることを用いた。特に zが正の整数のときはΓ(1) = 1 から Γ(n+1) = n! である。従っ

て、Γ(z) は階乗を実数（複素数）へ拡張したものといえる。Γ(z+1) = zΓ(z) を用いること

で Γ(z) の定義域を z ≤ 0 へ拡張できる。例えば、

Γ(z) =
Γ(z + n+ 1)

z(z + 1) . . . (z + n)
(7.37)

より、Γ(z+n+1) は z > −n− 1 で正則であるからΓ(z) の定義域は z > 0 から z > −n− 1

まで拡げられた。しかしながら、Γ(z) は z = 0,−1, . . . ,−n で発散している。一般に、Γ(z)

は 0 以上の整数 m に対して Γ(−m) は発散している (図 26参照)。

-5 -4 -3 -2 -1
x

-10

-5

5

10

15
Γ(x)

FIG. 26: ガンマ関数の振る舞い

展開係数を一意に決めるために a0 =
1

2αΓ(α+1)
ととることにする。このとき、α = ν, α = −ν

に対応したベッセル方程式の解をそれぞれ Jν(x), J−ν(x) と書くと

Jν(x) = xν
∑
k=0

a2kx
2k =

∞∑
k=0

(−1)k

k!Γ(k + ν + 1)

(x
2

)2k+ν

(7.38a)

J−ν(x) = x−ν
∑
k=0

a2kx
2k =

∞∑
k=0

(−1)k

k!Γ(k − ν + 1)

(x
2

)2k−ν

(7.38b)

と表される9。Jν(x) を ν 次の第 1種ベッセル関数という。ν ≥ 0 より、Jν(x) は x = 0 で

有限である。ν が整数でないときには、J−ν(x) は Jν(x) と線形独立な解であるが、ν が整

数のときには線形独立ではない：J−n(x) = (−1)nJn(x)。なぜならば、J−n(x) の級数和を∑n−1
k=0 +

∑∞
k=n と分けると、正の整数 m に対して 1/Γ(−m) = 0 となることから、第 1項の

9 limk→∞
a2k

a2k−2
= 0 より無限級数は収束半径 ∞ で収束する。
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和はゼロになる。第 2項の和は m = k − n と書くと

J−n(x) =
∞∑
k=n

(−1)k

k!Γ(k − n+ 1)

(x
2

)2k−n

=
∞∑

m=0

(−1)m+n

(m+ n)!Γ(m+ 1)

(x
2

)2m+n

= (−1)n
∞∑

m=0

(−1)m

m!Γ(m+ n+ 1)

(x
2

)2m+n

= (−1)nJn(x) (7.39)

となるからである。そこで、ν が整数かどうかで場合分けしなくて済むように、Jν(x) と線

形独立な解を

Nν(x) =
cos(νπ)Jν(x)− J−ν(x)

sin(νπ)
(7.40)

で定義し、これを ν 次の第 2種ベッセル関数と呼ぶ。ν が整数のときには ν → n の極限で

定義する。この極限では、分子分母ともゼロになり不定形になるので、ロピタルの定理によ

り分子分母を ν で微分することにより

Nn(x) = lim
ν→n

cos(νπ)Jν(x)− J−ν(x)

sin(νπ)

= lim
ν→n

−π sin(νπ)Jν(x) + cos(νπ)∂Jν(x)
∂ν

− ∂J−ν(x)
∂ν

π cos(νπ)

=
1

π

∂Jν(x)

∂ν

∣∣∣
ν=n

+
(−1)n

π

∂Jν(x)

∂ν

∣∣∣
ν=−n

(7.41)

によって決まる。(7.38a) より例えば

∂Jν(x)

∂ν

∣∣∣
ν=n

=
∞∑
k=0

(−1)k

k!Γ(k + ν + 1)

(x
2

)2k+ν
(
ln
x

2
− dΓ(k + ν + 1)/dν

Γ(k + ν + 1)

) ∣∣∣
ν=n

= Jn(x) ln
x

2
−

∞∑
k=0

(−1)kψ(k + n+ 1)

k!(k + n)!

(x
2

)2k+n

(7.42)

となる。ここで、ψ(z) = d
dz
ln Γ(z) である。これを用いると、Nn(x) の冪級数展開は次のよ

うに与えられる：

Nn(x) =
2

π
Jn(x) ln

x

2
− 1

π

n−1∑
k=0

(n− k − 1)!

k!

(x
2

)2k−n

− 1

π

∞∑
k=0

(−1)k [ψ(k + 1) + ψ(k + n+ 1)]

k!(k + n)!

(x
2

)2k+n

(7.43)

2つの線形独立な解のうち Jν(x) は原点で有界であり、Nν(x) は有界でない。図 24 に

Jn(x) を、図 27 に Nn(x) を示した。
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FIG. 27: 第 2種ベッセル関数の振る舞い

ν ≥ 0 のとき、x が小さいとき (|x| ≪ 1)には

Jν(x) →
1

Γ(ν + 1)

(x
2

)ν
Nν(x) → −Γ(ν)

π

(
2

x

)ν

となる。一方、xが大きいとき (|x| ≫ 1)には

Jν(x) →
√

2

πx
cos(x− νπ

2
− π

4
)

Nν(x) →
√

2

πx
sin(x− νπ

2
− π

4
)

のように振る舞う。

参考文献

• 「振動・波動」（有山正孝）

• 「自然科学者のための数学概論」（寺沢寛一）

• ”Classical Eelectrodynamics”(J.D.Jackson) (「電磁気学」(ジャクソン))
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8. 多重極展開

今度は、話をポアソン方程式に戻す。以前、ポアソン方程式の解は (3.12)式のように表

されることを見た。

Φ(x) =
1

4πϵ0

∫
ρ(x′)

|x− x′|
d3x′ (3.12)

それでは、(3.12)式の x′積分を遂行して、解をより具体的な形に表わしてみよう。

8–1. ラプラス方程式

電荷が有限の領域にのみ分布している状況を考え、電荷分布の外部のポテンシャルの振

る舞いに着目する。外部では電荷密度はゼロであるから、ポアソン方程式で右辺をゼロにし

たラプラス方程式を考えればよい。極座標で書くと

∇2Φ =
1

r2
∂

∂r

(
r2
∂Φ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂Φ

∂θ

)
+

1

r2 sin2 θ

∂2Φ

∂ϕ2
= 0 (8.1)

まず、極座標でのラプラス方程式の一般解を求めて、(3.12)式との関係を見出していこう。

解として Φ(r, θ, ϕ) = U(r)
r
P (θ)Q(ϕ)と変数分離形を仮定し、ラプラス方程式に代入し整

理すると

r2 sin2 θ

[
1

U

d2U

dr2
+

1

Pr2 sin θ

d

dθ

(
sin θ

dP

dθ

)]
+

1

Q

d2Q

dϕ2
= 0 (8.2)

となる。左辺第 1項と第 2項は rと θの関数、第 3項は ϕのみの関数であるから、各々定数

である。第 3項を分離定数−m2を用いて

1

Q

d2Q

dϕ2
= −m2 (8.3)

として解くとQ(ϕ) = e±imϕ となる。Q(ϕ) は一価関数だから (Q(0) = Q(2π))、mは整数で

あることが要請される。mが正負どちらでも取れることにすれば± の区別は重要でないの

で、Q(ϕ) = eimϕ と書ける。このとき、(8.2)式は

r2

U

d2U

dr2
+

1

P sin θ

d

dθ

(
sin θ

dP

dθ

)
− m2

sin2 θ
= 0 (8.4)

となる。第 1項は rのみの関数で、第 2項と第 3項は θのみの関数なので、さらに分離定数

を用いて式が分けられる。第 1項を ℓ(ℓ+ 1)と書くと (ℓ実数)、(8.4)式は

d2U

dr2
− ℓ(ℓ+ 1)

r2
U = 0 (8.5a)

1

sin θ

d

dθ

(
sin θ

dP

dθ

)
+

(
ℓ(ℓ+ 1)− m2

sin2 θ

)
P = 0 (8.5b)
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と分けられる。(8.5a)式を解くと、

U(r) = Arℓ+1 +Br−ℓ (8.6)

(A,B定数)。(8.5b)式はルジャンドルの陪微分方程式と呼ばれる。x = cos θとおくと

d

dx

(
(1− x2)

dP

dx

)
+

(
ℓ(ℓ+ 1)− m2

1− x2

)
P = 0 (8.7)

となる。ルジャンドルの陪微分方程式 (8.7)の解をルジャンドル陪多項式と呼び Pm
ℓ (x) と書

く。特に m = 0のとき、(8.7)式をルジャンドルの微分方程式、その解をルジャンドル多項式

と呼び Pℓ(x) と書く。Φ の一般解は可能なすべての分離定数 ℓ,m に対する解 U(r)
r
P (θ)Q(ϕ)

の線形和で書き表されることになる。

レポート課題 3� �
(8.5b)式から (8.7)式を導きなさい。解答はノートに手書きし（ノートの上に学生番号・

氏名を明記）、次回の講義時に提出しなさい。� �
8–2. ルジャンドル多項式

まず、簡単のため、m = 0 としたルジャンドルの微分方程式

d

dx

(
(1− x2)

dP

dx

)
+ ℓ(ℓ+ 1)P = (1− x2)

d2P

dx2
− 2x

dP

dx
+ ℓ(ℓ+ 1)P = 0 (8.8)

を解いてみる。なお、m = 0ということはQ(ϕ) = 1であり、ポテンシャルΦ(r, θ, ϕ)が ϕに

依存しない、すなわち軸対称 (z軸周りに対称)であることに相当する。

−1 ≤ x = cos θ ≤ 1の範囲で正則な解を求めればよい。そこで、冪級数展開した解

Pℓ(x) =
∞∑
k=0

akx
k (8.9)

を仮定し、(8.8)式に代入する：

0 =
∑
k=2

(1− x2)k(k − 1)akx
k−2 −

∑
k=0

2xkakx
k−1 +

∑
k=0

ℓ(ℓ+ 1)akx
k

=
∑
k=2

k(k − 1)akx
k−2 −

∑
k=0

k(k − 1)akx
k −

∑
k=0

2kakx
k +

∑
k=0

ℓ(ℓ+ 1)akx
k (8.10)

ここで、第２式第２項は
∑

k=2 とすべきところであるが、k = 0, 1を代入しても項はゼロに

なるので、
∑

k=0 とした。
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微分方程式を満たすように展開係数 ak を決定する。第 1項を k = 0 から始まるように

k − 2 → k と置き換えると、(8.10) 式は∑
k=0

(k + 1)(k + 2)ak+2x
k −

∑
k=0

(k(k + 1)− ℓ(ℓ+ 1)) akx
k = 0 (8.11)

となる。この等式が任意の xについて成り立つには、x の同じ冪の各係数がゼロにならなけ

ればならない。したがって、整数 k(≥ 0) に対して

ak+2 =
k(k + 1)− ℓ(ℓ+ 1)

(k + 1)(k + 2)
ak (8.12)

という漸化式を得る。つまり、展開係数 akは a0と a1のみで決まることになる。

ここで limk→∞
ak+2

ak
= 1より10、すべての kに対して ak ̸= 0 ならば、級数 (8.9)は x = 1

で発散してしまい、Pℓは有界とはなりえない。したがって、どこかの kで ak = 0となる必

要がある。(8.12)式を見るとそれが可能なのは (kはゼロ以上の整数であるから) 、ℓ がゼロ

以上の整数のときのみである。

さらに、k(k + 1)− ℓ(ℓ+ 1) = (k − ℓ)(k + ℓ+ 1) より、ℓ が偶数の場合には a0 から始ま

る偶数次数の展開係数 a2, a4, . . . は aℓ+2 = 0 となり、以降すべての偶数次数の係数はゼロ

になるが、a1 から始まる奇数次数の係数 a3, a5, . . . は消えないので、級数和は発散してし

まう。したがって、「ℓ が偶数の場合には a1 = 0 としておかなければならない」。同様に、

「ℓ が奇数の場合には a0 = 0 としておかなければならない」。

実はこれだけでは、展開係数は一意には決まらない。なぜなら、ルジャンドルの微分方

程式 (8.8)は線形の微分方程式なので、P を定数倍したものも解となる。この不定性を固定

するために

Pℓ(x = 1) = 1 (8.13)

という規格化条件を課す。

それでは、漸化式 (8.12)から具体的にルジャンドル多項式をいくつか求めてみよう。

ℓ = 0. (8.12)式より、a2 = 0。また、ℓ は偶数だから a1 = 0。よって、P0(x) = a0。 規格化

条件 (8.13)より、a0 = 1。 したがって、

P0(x) = 1 .

10 収束半径が 1 ということ。「無限級数およびべき級数のまとめ」参照。
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ℓ = 1. (8.12)式より、a3 = 0。また、ℓ は奇数だから a0 = 0。よって、P1(x) = a1x. 規格化

より、a1 = 1。したがって、

P1(x) = x .

ℓ = 2. (8.12)式より、a2 = −3a0, a4 = 0。よって、P2(x) = a0 − 3a0x
2。 規格化より、

P2(1) = −2a0 = 1。 したがって、

P2(x) =
3x2 − 1

2
.

レポート課題 4� �
漸化式 (8.12)と規格化条件 (8.13)から P3(x),P4(x) を求めなさい（あとで述べるロド

リゲスの公式は使わずに求めなさい）。� �
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無限級数およびべき級数のまとめ� �
ここで、無限級数の収束条件やべき級数の収束半径について簡単にまとめておく (ここ

の記述は「解析概論」（高木貞治）に従う)。くわしくは、微分積分学や解析学の教科書

を参考にされたい。

収束級数 まず、数列 {an} の n 項までの部分和 sn =
∑n

k=1 ak が有限の極限値

limn→∞ sn = s を持つとき、無限級数

∞∑
n=1

an

は s に収束するという。an = sn − sn−1 であるから、無限級数が収束するならば、

limn→∞ an = 0 である (必要条件)。極限値が存在しないときには無限級数は発散する

という。

また、絶対値の無限級数
∑∞

n=1 |an| が収束するとき、級数
∑
an は絶対収束するという。

Cauchy の収束条件 無限級数が収束する必要十分条件は、n を十分大きくして、任

意の k ≥ 1 について、どんな ϵ(> 0) に対しても

|an+1 + an+2 + · · ·+ an+k| < ϵ

が成り立つことである。

|an+1 + an+2 + · · ·+ an+k| < |an+1|+ |an+2|+ · · ·+ |an+k|

が成り立つから、絶対収束する級数は収束する。

正項級数の収束条件 an ≥ 0 の級数を正項級数という。正項級数の収束条件としてよ

く用いられるものとして次の 2つの判定法がある。

(I) 十分大きな番号 n 以上では常にある定数 q (0 < q < 1) に対して

a1/nn < q

が成り立つならば、
∑
an は収束（絶対収束）する。また、 a

1/n
n ≥ 1 ならば

∑
an は発

散する。

（証）an < qn より、an+m < qn+m(m = 0, 1, 2, . . . )。従って、an + an+1 + an+2 + · · · <

qn(1 + q + q2 + . . . ) = qn/(1− q) <∞。� �
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� �
(II) 十分大きな番号 n 以上では常にある定数 q (0 < q < 1) に対して

an+1

an
< q

が成り立つならば、
∑
an は収束（絶対収束）する。また、an+1/an ≥ 1 ならば

∑
an は

発散する。

(証)an+m < qan+m−1 より、an+m < qman。従って、an + an+1 + an+2 + · · · < an(1 + q +

q2 + . . . ) <∞。

べき級数と収束半径

∞∑
n=0

anx
n

を x のべき級数という。べき級数が x = r のときに収束するならば、|x| < r に対して

絶対収束する。

べき級数が絶対収束する |x| の上限値 R をべき級数の収束半径という。べき級数が任意

の x に対して収束する場合には収束半径は R = ∞ とし、x = 0 以外では収束しないと

きには R = 0 とする。

収束半径 R は次の式で与えられる (ここの極限は正確には上極限 (lim)である) :

1

R
= lim

n∞
|an|1/n

(証) ℓ = limn→∞ |an|1/n とおくと、limn→∞ |anxn|1/n = ℓ|x|。よって、ℓ|x| < 1 ならば∑
|anxn| は収束し、ℓ|x| > 1 ならば発散。従って、R = 1/ℓ。

また、

lim
n→∞

|an+1|
|an|

= ℓ

が存在するときには、R = 1/ℓ で与えられる。� �
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1. ロドリゲスの公式

ルジャンドル多項式 Pℓ(x)は次のように書けることが知られている (ロドリゲスの公式)

Pℓ(x) =
1

2ℓℓ!

(
d

dx

)ℓ

(x2 − 1)ℓ . (8.14)

この公式を示そう。まず、fℓ(x) = (x2−1)ℓとおく。微分すると、f ′
ℓ = 2ℓx(x2−1)ℓ−1 より

(1− x2)f ′
ℓ + 2ℓxfℓ = 0 (8.15)

となる。この式をさらに微分すると、

(1− x2)f ′′
ℓ + 2(ℓ− 1)xf ′

ℓ + 2ℓfℓ = 0 (8.16)

となる。ここで、関数の積の ℓ 階微分は(
d

dx

)ℓ

f(x)g(x) =
ℓ∑

k=0

ℓ!

k!(ℓ− k)!

dkf

dxk
dℓ−kg

dxℓ−k
(8.17)

と書けることを用いて、(8.16) 式をさらに ℓ回微分すると

0 = (1− x2)f
(ℓ+2)
ℓ − 2ℓxf

(ℓ+1)
ℓ − ℓ(ℓ− 1)f

(ℓ)
ℓ + 2(ℓ− 1)xf

(ℓ+1)
ℓ + 2(ℓ− 1)ℓf

(ℓ)
ℓ + 2ℓf

(ℓ)
ℓ

= (1− x2)f
(ℓ+2)
ℓ − 2xf

(ℓ+1)
ℓ + ℓ(ℓ+ 1)f

(ℓ)
ℓ (8.18)

となるが、この式は、ルジャンドルの微分方程式 (8.8)そのものである。したがって、

Pℓ(x) = C

(
d

dx

)ℓ

fℓ(x) = C

(
d

dx

)ℓ

(x2 − 1)ℓ (8.19)

と書ける。ここで、規格化条件 (8.13)より、Pℓ(1) = C2ℓℓ! = 1 から C は決まる ((x2− 1)ℓ =

(x− 1)ℓ(x+ 1)ℓより、x = 1では (x− 1)ℓを ℓ回微分したもののみ残ることに注意)。こうし

て、ロドリゲスの公式 (8.14)が示された。

2. 直交性

ルジャンドル多項式は次の直交関係を満たす（これは三角関数の直交関係

(2.3a),(2.3b),(2.3c)のルジャンドル版である）：∫ 1

−1

Pℓ(x)Pℓ′(x)dx =
2

2ℓ+ 1
δℓℓ′ (8.20)
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この関係式を示そう。Pℓに対するルジャンドルの微分方程式 (8.8)に Pℓ′を掛けたものを

積分すると

0 =

∫ 1

−1

Pℓ′(x)

[
d

dx

(
(1− x2)

dPℓ(x)

dx

)
+ ℓ(ℓ+ 1)Pℓ(x)

]
dx = 0

=

∫ 1

−1

(x2 − 1)
dPℓ′

dx

dPℓ

dx
+ ℓ(ℓ+ 1)Pℓ′Pℓdx (8.21)

となる。ここで最後の式では第 1項を部分積分した。(8.21)式で ℓと ℓ′を入れ替えた積分

0 =

∫ 1

−1

(x2 − 1)
dPℓ

dx

dPℓ′

dx
+ ℓ′(ℓ′ + 1)PℓPℓ′dx (8.22)

と (8.21)式を引くと

[ℓ(ℓ+ 1)− ℓ′(ℓ′ + 1)]

∫ 1

−1

PℓPℓ′dx = 0 (8.23)

つまり、ℓ ̸= ℓ′ ならば、
∫ 1

−1
PℓPℓ′dx = 0 である。これで関係式 (8.20)の半分が示された。

次に、ℓ = ℓ′のときの関係式を導出しよう。Nℓ =
∫ 1

−1
P 2
ℓ dx とおき、ロドリゲスの公式

(8.14)を用いると次のようになる：

Nℓ =
1

22ℓ(ℓ!)2

∫ 1

−1

dℓ

dxℓ
(x2 − 1)ℓ

dℓ

dxℓ
(x2 − 1)ℓdx . (8.24)

ここで、ℓ回部分積分を行い、片方の ℓ階微分を消してもう片方を 2ℓ階微分にすると

Nℓ =
(−1)ℓ

22ℓ(ℓ!)2

∫ 1

−1

(x2 − 1)ℓ
d2ℓ

dx2ℓ
(x2 − 1)ℓdx =

(2ℓ)!

22ℓ(ℓ!)2

∫ 1

−1

(1− x2)ℓdx (8.25)

となる。最後の式では d2ℓ(x2 − 1)ℓ/dx2ℓ = (2ℓ)!を用い、また (x2 − 1)ℓ = (−1)ℓ(1− x2)ℓと

書き換えた。最後の式をさらに部分積分すると

Nℓ =
(2ℓ)!

22ℓ(ℓ!)2

∫ 1

−1

x2ℓx(1− x2)ℓ−1dx

=
(2ℓ)!

22ℓ(ℓ!)2

∫ 1

−1

−2ℓ(1− x2)ℓ + 2ℓ(1− x2)ℓ−1dx

= −2ℓNℓ + (2ℓ− 1)Nℓ−1 (8.26)

という漸化式になる。この漸化式は次のように簡単に解ける：

(2ℓ+ 1)Nℓ = (2ℓ− 1)Nℓ−1 = · · · = 3N1 = N0 =

∫ 1

−1

P 2
0 dx = 2 (8.27)

ここで、P0 = 1を使ってN0を求めた。したがって、Nℓ = 2/(2ℓ+ 1) となり、関係式 (8.20)

が示された。
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3. ルジャンドル展開

直交関係 (8.20)より、−1 ≤ x ≤ 1で定義された任意の関数 f(x)は次のようにルジャン

ドル多項式で展開できる (これをルジャンドル展開という)：

f(x) =
∞∑
ℓ=0

fℓPℓ(x) (8.28)

ここで、展開係数 fℓは直交関係 (8.20)より、次のように与えられる：

fℓ =
2ℓ+ 1

2

∫ 1

−1

f(x)Pℓ(x)dx . (8.29)

また、U(r)の一般解 (8.6)式より、真空の (静電)ポテンシャル Φ が ϕ によらない（軸対

称）とき、

Φ(r, θ) =
∞∑
ℓ=0

(Aℓr
ℓ +Bℓr

−ℓ−1)Pℓ(cos θ) (8.30)

と表されることになる。係数Aℓ, Bℓは境界条件より決まる。
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8–3. ルジャンドル陪多項式

それでは、一般のm ̸= 0 の場合のルジャンドルの陪微分方程式 (8.7)

(1− x2)
d2Pm

ℓ

dx2
− 2x

dPm
ℓ

dx
+

(
ℓ(ℓ+ 1)− m2

1− x2

)
Pm
ℓ = 0 (8.7)

の解を求めよう。そこで、Pm
ℓ (x) = (1− x2)

m
2 y(x) とおく。

Pm
ℓ

′ = (1− x2)
m
2 y′ −mx(1− x2)

m
2
−1y

Pm
ℓ

′′ = (1− x2)
m
2 y′′ − 2mx(1− x2)

m
2
−1y′ +m

(
(m− 1)x2 − 1

)
(1− x2)

m
2
−2y

より、(8.7)式に代入すると

(1− x2)y′′ − 2(m+ 1)xy′ + (ℓ−m)(ℓ+m+ 1)y = 0 (8.32)

となる。実はこの微分方程式は、ルジャンドルの微分方程式 (8.8)をm回微分したもの

(1− x2)P
(m+2)
ℓ − 2(m+ 1)xP

(m+1)
ℓ + (ℓ−m)(ℓ+m+ 1)P

(m)
ℓ = 0 (8.33)

と全く同じ形である。したがって、y(x) = P
(m)
ℓ (x)。11よって、

Pm
ℓ (x) = (1− x2)

m
2

(
d

dx

)m

Pℓ(x) =
1

2ℓℓ!
(1− x2)

m
2

(
d

dx

)ℓ+m

(x2 − 1)ℓ (8.34)

となる。ここで、 ロドリゲスの公式 (8.14)を用いた。

この導出では暗黙のうちにm ≥ 0を仮定した（m回微分）が、ルジャンドルの陪微分方

程式 (8.7)にmはm2の形でしか入ってこないので、(8.34)の最後の式でmを−mとしたも

のも解のはずである。実際、Pm
ℓ と P−m

ℓ は次の比例関係にあることが示される：

P−m
ℓ (x) = (−1)m

(ℓ−m)!

(ℓ+m)!
Pm
ℓ (x). (8.35)

この式は、(8.34)式でm→ −mとした P−m
ℓ が Pm

ℓ に比例するとして P−m
ℓ = cℓmP

m
ℓ とし(

d

dx

)ℓ−m

(x2 − 1)ℓ = cℓm(1− x2)m
(
d

dx

)ℓ+m

(x2 − 1)ℓ (8.36)

を計算することから示される。

そこで、正負の可能なすべてのmに対して、(8.34)式でルジャンドル陪多項式を定義す

る。P±m
ℓ (x) ̸= 0 であるには、(8.34)式で、微分の階数が 2ℓを超えない必要がある。した

がって、−ℓ ≤ m ≤ ℓである必要がある。また、ℓはゼロ以上の整数である。

11 慣習により、ここでの比例係数は 1とする。
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1. 直交性

ルジャンドル多項式と同様、ルジャンドル陪多項式に対しても以下の直交関係が成り立つ:∫ 1

−1

Pm
ℓ′ (x)P

m
ℓ (x)dx =

2

2ℓ+ 1

(ℓ+m)!

(ℓ−m)!
δℓℓ′ . (8.37)

これを示そう。まず、

Nm =

∫ 1

−1

Pm
ℓ′ (x)P

m
ℓ (x)dx =

∫ 1

−1

(1− x2)m
dmPℓ′

dxm
dmPℓ

dxm
(8.38)

とおき、部分積分すると、次のように書き換えられる:

Nm = −
∫ 1

−1

dm−1Pℓ′

dxm−1

d

dx

(
(1− x2)m

dmPℓ

dxm

)
(8.39)

一方、ルジャンドルの微分方程式 (8.8)を (m− 1)回微分して、(1− x2)m−1 を掛けると

d

dx

(
(1− x2)m

dmPℓ

dxm

)
+ (ℓ+m)(ℓ−m+ 1)(1− x2)m−1d

m−1Pℓ

dxm−1
= 0 (8.40)

となるので、(8.39)式は

Nm = (ℓ+m)(ℓ−m+ 1)Nm−1 (8.41)

となる。この漸化式を解くと、

Nm = (ℓ+m)(ℓ+m− 1)(ℓ−m+ 2)(ℓ−m+ 1)Nm−2

= · · · = (ℓ+m)(ℓ+m− 1) . . . (ℓ+ 1)ℓ . . . (ℓ−m+ 2)(ℓ−m+ 1)N0

=
(ℓ+m)!

(ℓ−m)!
N0 (8.42)

ここで、N0はルジャンドル多項式の直交関係 (8.20)そのものなので、(8.37)式を得る。
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8–4. 球面調和関数

m ̸= 0 のときには、Qm(ϕ) = eimϕ ̸= 1 であるから、ポテンシャルの θ, ϕ依存性を同時

に考える必要がある。そこで、(8.37)を考慮して、単位球面上で１に規格化された直交関数

(m ≥ 0 とする)

Yℓm(θ, ϕ) = (−1)m

√
(2ℓ+ 1)

4π

(ℓ−m)!

(ℓ+m)!
Pm
ℓ (cos θ)eimϕ (8.43)

を球面調和関数という。直交性は∫
dΩ Y ∗

ℓ′m′(θ, ϕ)Yℓm(θ, ϕ) =

∫ 2π

0

dϕ

∫ π

0

sin θdθ Y ∗
ℓ′m′(θ, ϕ)Yℓm(θ, ϕ) = δℓℓ′δmm′ (8.44)

で与えられる (Y ∗
ℓm(θ, ϕ) は Yℓm(θ, ϕ) の複素共役)。また、(8.35)式に対応して

Yℓ,−m = (−1)mY ∗
ℓm (8.45)

となる。例えば、ℓ = 0, 1, 2に対しては

Y00 =
1√
4π
, (8.46a) Y10 =

√
3
4π

cos θ,

Y11 = −
√

3
8π

sin θeiϕ
(8.46b)


Y20 =

√
5

16π
(3 cos2 θ − 1),

Y21 = −
√

15
8π

sin θ cos θeiϕ,

Y22 =
√

15
32π

sin2 θe2iϕ,

(8.46c)

となる。とくに、m = 0のときには (8.43)式より

Yℓ0 =

√
2ℓ+ 1

4π
Pℓ(cos θ) (8.47)

と書ける。また、Yℓmは (8.5b)式より

−
[

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂ϕ2

]
Yℓm = ℓ(ℓ+ 1)Yℓm (8.48)

を満たすことに注意する。左辺の微分演算子は、量子力学における座標表示の角運動量演算

子 L = x × (−iℏ∇) を用いて、L2/ℏ2 と書かれる。すなわち、L2Yℓm = ℓ(ℓ + 1)ℏ2Yℓm であ

る。角運動量演算子は量子力学において重要な役割をする。
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直交関係 (8.44)より、任意の関数 g(θ, ϕ)は球面調和関数により展開できる：

g(θ, ϕ) =
∞∑
ℓ=0

m=ℓ∑
m=−ℓ

gℓmYℓm(θ, ϕ) (8.49)

展開係数 gℓm は

gℓm =

∫
dΩ g(θ, ϕ)Y ∗

ℓm(θ, ϕ) (8.50)

と与えられる。

結局、(8.30)式に対応して、ラプラス方程式の一般解は

Φ(r, θ, ϕ) =
∞∑
ℓ=0

m=ℓ∑
m=−ℓ

(
Aℓmr

ℓ +Bℓmr
−ℓ−1

)
Yℓm(θ, ϕ) (8.51)

と展開されることになる。(8.30)式や (8.51)式のように、関数を角度に依存した関数 (Pℓ(cos θ)

や Yℓm(θ, ϕ))で展開することを一般に多重極展開 (multipole expansion)という。
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8–5. 多重極展開

それでは、ポアソン方程式の解 (3.12)を多重極展開してみよう。(3.12)式

Φ(x) =
1

4πϵ0

∫
ρ(x′)

|x− x′|
d3x′ (3.12)

において、1/|x − x′| は (3.15)式より、∇2(1/|x − x′|) = −4πδ(x − x′) であるから電荷分

布の外部ではラプラス方程式を満たす。さらに、|x−x′| はx と x′ のなす角 γ にしかよら

ない：|x−x′| =
√
r2 + r′2 − 2rr′ cos γ （γと θ, ϕ, θ′, ϕ′との関係は後でみることにする）の

で、1/|x−x′| はルジャンドル多項式Pℓ(cos γ)で展開できることになる。そこで、(8.30)式

より、

1

|x− x′|
=

∞∑
ℓ=0

(Aℓr
ℓ +Bℓr

−ℓ−1)Pℓ(cos γ) (8.52)

と展開し、展開係数Aℓ, Bℓを決めていく。xが x′と重なっているとき (γ = 0)、r > r′とし

て左辺は

1

|x− x′|
=

1

r − r′
=

1

r

∑
ℓ=0

(
r′

r

)ℓ

(8.53)

と書け、一方右辺は Pℓ(1) = 1より、

∞∑
ℓ=0

(Aℓr
ℓ +Bℓr

−ℓ−1) (8.54)

となる。両辺を比べて、直ちに

Aℓ = 0, Bℓ = r′ℓ (8.55)

がわかり、

1

|x− x′|
=

∞∑
ℓ=0

r′ℓ

rℓ+1
Pℓ(cos γ) (8.56)

となる。すなわち、ポテンシャルは

Φ(r, γ) =
1

4πϵ0

∞∑
ℓ=0

∫
ρ(x′)r′ℓ

rℓ+1
Pℓ(cos γ)d

3x′ (8.57)

と表されることがわかる。ℓが大きくなるほど 1/r の冪が大きくなり、遠方では ℓの大きな

項の寄与は無視できるほど小さいことがわかる。
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θ, ϕでの多重極展開は後に回すことにして、Pℓ(cos γ) による多重極展開での各 ℓに対応

する項の意味を調べてみよう。(8.57)式の最初の数項を書き下してみると

Φ(r, γ) =
1

4πϵ0r

∫
ρ(x′)d3x′ +

1

4πϵ0r2

∫
ρ(x′)r′ cos γd3x′

+
1

4πϵ0r3

∫
ρ(x′)r′2

(3 cos2 γ − 1)

2
d3x′ + . . . (8.58)

となる。

単極子 (ℓ = 0)　 (8.58) 式の第 1項は総電荷

Q =

∫
ρ(x′)d3x′ (8.59)

(単極子モーメント (monopole moment)と呼ばれる)による点電荷のポテンシャルと同じ

もので、単極子項と呼ばれる。rが大きな遠方ではQ ̸= 0ならばこの項の寄与が最も大きい。

電荷が広がって分布していようと、遠くから見れば点電荷で近似できるというわけである。

双極子 (ℓ = 1)　 (8.58) 式の第 2項は、x方向の単位ベクトル x̂ = x/rとして x̂ · x′ =

r′ cos γを使うと

1

4πϵ0r2

∫
ρ(x′)r′ cos γd3x′ =

x̂ · p
4πϵ0r2

(8.60)

と書ける。ここで、pは

p =

∫
ρ(x′)x′d3x′ (8.61)

で与えられる電荷の重みつき位置ベクトルであり、(電気)双極子モーメント (electric dipole

moment)とよばれ、電荷分布の線的な広がりを表す。第2項を双極子項という。なお、Q ̸= 0

ならば座標原点の取り方で双極子モーメントはいつでもゼロにできる。なぜならxp = p/Q

を新たな座標原点に取れば、この原点から定義される双極子モーメント pnewは

pnew =

∫
ρ(x′)(x′ − xp)d

3x′ = p− p

Q

∫
ρ(x′)d3x′ = 0 (8.62)

となるからである。xp = p/Qは質点の場合の重心に相当する。

たとえば、位置x+に電荷 q(> 0)、x−に電荷−qの点電荷があるとき (総電荷ゼロ)、双極

子モーメントは p = qx+ + (−q)x− = q(x+ − x−)となる (向きは−qから qへ向かう向き)。

より一般に、N 個の点電荷があるとき、各電荷を qm (m = 1, . . . , N)、各電荷の位置ベクト

ルを xm と書くと、p =
∑N

m=1 qmxm と表される。
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４重極子 (ℓ = 2) 　 (8.58) 式の第 3項は次のように書き換えられる

1

4πϵ0r3

∫
ρ(x′)r′2

(3 cos2 γ − 1)

2
d3x′ =

3

8πϵ0r3

∫
ρ(x′)

(
(x̂ · x′)2 − 1

3
r′2
)
d3x′

≡ 3

8πϵ0r3

3∑
i,j=1

x̂ix̂jQij (8.63)

ここでQijは次式で与えられ (x1 = x, x2 = y, x3 = z))

Qij =

∫
ρ(x′)

(
x′ix

′
j −

1

3
δijr

′2
)
d3x′ (8.64)

(電気)４重極子モーメント (electric quadrupole moment)と呼ばれ、電荷分布の面的な

広がりを表す。第3項を4重極子項という。なお、Qijのトレースはゼロである：
∑3

i=1Qii = 0。

N個の点電荷からなるときには、Qij =
∑N

m=1 qm
(
xmixmj − 1

3
δijr

2
)
と与えられる。ここで、

xmi は m 番目の電荷 qm の位置ベクトルの i 成分である。

-q q

-qq

-a/2 a/2

FIG. 28: 電荷分布の 4重極子

たとえば、点電荷が、xy平面の原点を中心とする一辺 aの正方形の頂点に交互に q,−qと

配置されているとき (総電荷ゼロ、総双極子ゼロ)(図 28 参照)、ゼロでない４重極子モーメ

ントはQ12 = Q21 = qa2である。

以上により、 ポテンシャルは ℓ = 2 までで

Φ(r, γ) =
Q

4πϵ0r
+

x̂ · p
4πϵ0r2

+
3

8πϵ0r3

3∑
i,j=1

x̂ix̂jQij + . . . (8.65)

と表される。ここまでくれば ℓ = 3の８重極子 (octupole)はどのような分布に相当するかも

想像がつくであろう。図 29に多重極展開を図式化して示した。
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FIG. 29: 電荷分布の多重極展開

レポート課題 5� �
点電荷が、xy平面の原点を中心とする一辺 aの正方形の頂点に交互に q,−qと配置され

ているとき、ゼロでない４重極子モーメントはQ12 = Q21 = qa2であることを示しなさ

い。解答はノートに手書きし（ノートの上に学生番号・氏名を明記）、次回の講義時に

提出しなさい。� �
重力ポテンシャルの場合の多重極展開

質量密度 ρ(x) をもった物体が作る重力ポテンシャル

ϕ(x) = −G
∫

ρ(x′)

|x− x′|
d3x′ (3.17)

も全く同様に多重極展開できる。ただし、今度は

M =

∫
ρ(x′)d3x′ (8.66)

は全質量 (単極子モーメント)、

p =

∫
ρ(x′)x′d3x′ (8.67)
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は（質量）双極子モーメント、

Qij =

∫
ρ(x′)

(
x′ix

′
j −

1

3
δijr

′2
)
d3x′ (8.68)

は（質量）4重極子モーメントとして、(3.17) は

ϕ(r, γ) = −GM
r

−G
x̂ · p
r2

−G
3

2r3

3∑
i,j=1

x̂ix̂jQij + . . . (8.69)

と展開される。電荷の場合と異なり、つねに M ̸= 0 であるから、重心の位置ベクトル R =

p/M を原点にとる重心系に移れば、双極子モーメントは消せることに注意する。実際、次

の座標変換

xnew = x−R (8.70)

を行うと (図 30参照)、xnew を用いて定義される（質量）双極子モーメント pnew は

pnew =

∫
ρ(x′)x′

newd
3x′new =

∫
ρ(x′)(x′ −R)d3x′ = p− p

M

∫
ρ(x′)d3x′ = 0 (8.71)

となる。

R

𝒙𝒏𝒆𝒘

𝒙

𝝆(𝒙)

FIG. 30: 重心系 xnew と x の関係
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1. 加法定理

(8.57)では、静電ポテンシャル Φ(r, θ, ϕ)を、xと x′ のなす角を γ としたときのPℓ(cos γ)

を用いて多重極展開した。それでは、Pℓ(cos γ)と Yℓm(θ, ϕ)との関係を見出し、Yℓm(θ, ϕ)を

用いたΦ(r, θ, ϕ)の多重極展開を行おう。

FIG. 31: xと x′の極座標の関係

まず、x方向の単位ベクトルは (sin θ cosϕ, sin θ sinϕ, cos θ)（x′方向の単位ベクトルも同

様）なので (図 31)参照)、cos γは

cos γ = sin θ sin θ′ cos(ϕ− ϕ′) + cos θ cos θ′ (8.72)

と書けることに注意する。この式を一見すると右辺には θ, ϕ, θ′, ϕ′が混ざっていて、多重極

展開で θ′, ϕ′だけを積分することはできないように見える。ところが、P (cos γ)は球面調和

関数を使うと θ, ϕと θ′, ϕ′で分離して書けてしまうのである。すなわち

球面調和関数の加法定理� �
Pℓ(cos γ) =

4π

2ℓ+ 1

ℓ∑
m=−ℓ

Y ∗
ℓm(θ

′, ϕ′)Yℓm(θ, ϕ) (8.73)

� �
が成り立つ。以下ではこのことを示そう。

まず、θ′, ϕ′を固定して考える。すると、Pℓ(cos γ)は θ, ϕ の関数であるから Yℓm(θ, ϕ)で展
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開できる。ℓは共通だから、

Pℓ(cos γ) =
ℓ∑

m=−ℓ

Am(θ
′, ϕ′)Yℓm(θ, ϕ) (8.74)

と書ける。展開係数は一般には θ′, ϕ′の関数になる。

Am(θ
′, ϕ′) =

∫
dΩ Y ∗

ℓm(θ, ϕ)Pℓ(cos γ) (8.75)

ここで、x′軸を z軸とみたときの極座標の角度座標を γ(x′とxとのなす角)、β（x′軸の周

りの角）と書くと、(8.47)式より Pℓ(cos γ) =
√

4π
2ℓ+1

Yℓ0(γ, β)と書ける。

さらに、Y ∗
ℓm(θ, ϕ)を Yℓm(γ, β)で展開し

Y ∗
ℓm(θ, ϕ) =

ℓ∑
m′=−ℓ

ym′Yℓm′(γ, β) (8.76)

とし、(8.75)式に代入し、直交関係 (8.44)を用いると

Am(θ
′, ϕ′) =

ℓ∑
m′=−ℓ

∫
dΩ ym′Yℓm′(γ, β)

√
4π

2ℓ+ 1
Yℓ0(γ, β)

=
ℓ∑

m′=−ℓ

ym′

√
4π

2ℓ+ 1
δm′0

=

√
4π

2ℓ+ 1
y0 (8.77)

となる。ここで、(8.76)式で γ = 0ととるとxはx′軸と一致するので左辺は Y ∗
ℓm(θ

′, ϕ′)にな

り、右辺は (軸対称（x′軸周りに対称）だから)m′ = 0のみ残る。

Y ∗
ℓm(θ

′, ϕ′) = y0Yℓ0(γ, β)|γ=0 =

√
2ℓ+ 1

4π
y0Pℓ(cos γ = 1) =

√
2ℓ+ 1

4π
y0 (8.78)

したがって、

Am(θ
′, ϕ′) =

4π

2ℓ+ 1
Y ∗
ℓm(θ

′, ϕ′) (8.79)

となり、加法定理は示せた。

2. 極座標での多重極展開

加法定理 (8.73)を用いて多重極展開 (8.57)を極座標を用いて書き換えると

Φ(r, θ, ϕ) =
1

4πϵ0

∞∑
ℓ=0

ℓ∑
m=−ℓ

4π

2ℓ+ 1

(∫
ρ(x′)r′ℓY ∗

ℓm(θ
′, ϕ′)d3x′

)
Yℓm(θ, ϕ)

rℓ+1

≡ 1

4πϵ0

∞∑
ℓ=0

ℓ∑
m=−ℓ

4π

2ℓ+ 1
qℓm

Yℓm(θ, ϕ)

rℓ+1
(8.80)
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となる。ここで、多重極モーメント (multipole moment) qℓm は

qℓm =

∫
ρ(x′)r′ℓY ∗

ℓm(θ
′, ϕ′)d3x′ (8.81)

で定義される。(8.45)式より

qℓ,m = (−1)mq∗ℓm (8.82)

ℓ = 0, 1, 2 に対しては、(8.46a),(8.46b),(8.46c)式と (8.59),(8.61),(8.64)式から

q00 =
1√
4π
Q, (8.83a) q10 =

√
3
4π
pz,

q11 = −
√

3
8π
(px − ipy),

(8.83b)


q20 = 3

√
5

16π
Q33,

q21 = −
√

15
8π
(Q13 − iQ23),

q22 =
√

15
32π

(Q11 − 2iQ12 −Q22)

(8.83c)

と与えられる。
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9. 中心力ポテンシャルによる散乱問題

量子力学における中心力ポテンシャル V (r)による粒子の散乱問題を考えよう。波動関数

Ψ(x)が従うエネルギー固有値方程式（時間を含まない Schrödinger方程式）は

HΨ =

(
− ℏ2

2m
∇2 + V (r)

)
Ψ(x) = EΨ(x) (9.1)

で与えられる。中心力であるから角運動量は保存される。考えたい問題は、原点に入射して

きた平面波 eik·x が中心力ポテンシャルの影響を受けて、どの方向にどのような強度で散乱

されるか、ということである（図 32参照）。

x

V(r)

FIG. 32: 散乱問題の概念図。入射平面波（左）がポテンシャルによる影響を受けて、ポテンシャル

原点から広がる球面波として伝播する。

これから、散乱問題を 2通りの方法 (グリーン関数法と部分波展開)で解いてみよう。

9–1. グリーン関数法

E = ℏ2k2/2m と書くと、(9.1) は

(∇2 + k2)Ψ(x) =
2m

ℏ2
V (r)Ψ(x) (9.2)
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と書き換えられる。ここで、グリーン関数

(∇2 + k2)G(x,x′) = δ(x− x′) (9.3)

を導入する。このグリーン関数は「レポート課題 8」のものを m2 → −k2 とし、デルタ関数

の前の符号を変えたものである。解は次のように与えられる

G(x,x′) = − 1

4π

e±ik|x−x′|

|x− x′|
(9.4)

+(−) は外向波（内向波）を表す。すると、(9.2) の解は、V (r) = 0 とした解（平面波解）

Ψ0(x) を加えて、形式的に

Ψ(x) = Ψ0(x)−
2m

ℏ2

∫
d3x′

e±ik|x−x′|

4π|x− x′|
V (r′)Ψ(x′) (9.5)

と書ける。これは、微分方程式 (9.2)を「積分方程式」に書き換えたことになる。両辺に Ψ(x)

が入ったままであるから解を求めたことにはなっていない。

積分方程式とボルン近似� �
積分方程式を解く一つの方法に「摂動展開法」がある。これは V がエネルギーE に比

べて小さいとして、右辺の積分内の Ψ(x) を平面波解Ψ0(x) で置き換えることで、逐次

近似的に V の効果を取り入れた解を構成する方法である（この場合の方法を特にボルン

近似という）。つまり、(9.5) の第 1近似解を

Ψ1(x) = Ψ0(x)−
2m

ℏ2

∫
d3x′

e±ik|x−x′|

4π|x− x′|
V (r′)Ψ0(x

′)

とするのである。さらにこの解を右辺に代入し

Ψ2(x) = Ψ0(x)−
2m

ℏ2

∫
d3x′

e±ik|x−x′|

4π|x− x′|
V (r′)Ψ1(x

′)

= Ψ0(x)−
2m

ℏ2

∫
d3x′

e±ik|x−x′|

4π|x− x′|
V (r′)Ψ0(x

′)

−2m

ℏ2

∫
d3x′

e±ik|x−x′|

4π|x− x′|
V (r′)

(
−2m

ℏ2

∫
d3x′′

e±ik|x′−x′′|

4π|x′ − x′′|
V (r′′)Ψ0(x

′′)

)
のようにしていけば、V のより高次の効果を取り入れた解になっている。� �
ここで |x|(= r) ≫ |x′|(= r′) とすると、|x − x′| =

√
r2 − 2x · x′ + r′2 ≃ r − r̂ · x′ とな

り、k′ ≡ kr̂ と書くと e±ik|x−x′| = e±ikre∓ik′·x′
となるから、(9.5) で外向波をとると

Ψ(x) = Ψ0(x)−
2m

4πℏ2
eikr

r

∫
d3x′ e−ik′·x′

V (r′)Ψ(x′) ≡ Ψ0(x) +
eikr

r
f(k,k′) (9.6)
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第 2項は、振幅 f(k,k′) で原点から広がる球面波を表している。振幅 f(k,k′) はポテンシャ

ルの影響により決まる関数である。すわなち、第 2項はポテンシャルによる散乱を受けた波

（散乱波）であり、その振幅 f(k,k′) を散乱振幅という。

1. アイコナール近似

散乱振幅 f(k,k′) を求めるために、波動関数を近似的に求めてみよう。そのために、波

数 k が十分大きく（波長が十分短く）、波長の範囲でのポテンシャル V (r) はほとんど変化

しないものとする。このとき、Ψ を半古典的な波動関数で置き換えることができる

Ψ ∼ eiS(x)/ℏ (9.7)

ここで、S(x) はアイコナール（ギリシャ語でイメージの意）と呼ばれ、平面波のときには

S/ℏ = k ·x となることから、非常に大きい関数である: S ≫ 1。すると、∇2Ψ = (i∇2S/ℏ−

(∇S)2/ℏ2)eiS/ℏ となるから、S が大きいときには　 (9.1) 式は

(∇S)2

2m
+ V = E =

ℏ2k2

2m
(9.8)

となる。この式は、解析力学で「ハミルトンーヤコビ方程式」と呼ばれているものである。

このように、波数 k が大きいとして、S が大きいとした (9.7) の形の解を求める方法をアイ

コナール近似という。

ここで、 k が十分大きいのでエネルギーが高く、粒子の軌道はほぼ直線的 (図 33で散乱

角 θ ≪ 1)であるとしよう。軌道方向を z 軸をとし、図 33 のように円筒座標をとることに

する12。このとき、S は

S

ℏ
=

∫ z

−∞
dz′
(
k2 − 2m

ℏ2
V (

√
b2 + z′2)

)1/2

+定数 (9.9)

とかける。ここで、V → 0 のときには (z → −∞)、平面波 S/ℏ → kz になるように定数を

決めると

S

ℏ
= kz +

∫ z

−∞
dz′

((
k2 − 2m

ℏ2
V (

√
b2 + z′2)

)1/2

− k

)

≃ kz − m

ℏ2k

∫ z

−∞
dz′ V (

√
b2 + z′2) (9.10)

12 筒の半径方向を b とした。b は入射方向が原点の「的」からどれだけ外れているかを表すものであり、衝突

径数と呼ばれる。
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z

b
x

FIG. 33: アイコナール近似における粒子の軌道 (青線)。点線円はポテンシャルの影響をうける領域。

となる。ここで、V ≪ E とした。したがって、アイコナール近似の下で波動関数が次のよ

うに求められたことになる：

Ψ = eiS/ℏ = eikz exp

[
− im

ℏ2k

∫ z

−∞
dz′ V (

√
b2 + z′2)

]
(9.11)

これを (9.6) に代入すれば散乱振幅を求めることができる：

f(k,k′) = − 2m

4πℏ2

∫
d3x′ e−ik′·x′

V (
√
b2 + z′2)eikz

′
exp

[
− im

ℏ2k

∫ z′

−∞
dz′′ V (

√
b2 + z′′2)

]
(9.12)

ここで、x′ = b + z′ẑ なので、−k′ · x′ + kz′ = −k′ · b + z′(k − k′ · ẑ) となるが、第 2項は

k′ と z軸 のなす角を θ とすれば、z′k(1− cos θ) ≃ z′kθ2/2 となるから、θ ≪ 1 のときには

無視できる。 散乱は xz 平面内で起きているとし、方位角を ϕ とすると

k′ · b = (k sin θx̂+ k cos θẑ) · (b cosϕx̂+ b sinϕŷ) ≃ kbθ cosϕ (9.13)

より、円筒座標で積分して (9.12) は

f(k,k′) = − 2m

4πℏ2

∫ ∞

0

bdb

∫ 2π

0

dϕe−ikbθ cosϕ

∫ ∞

−∞
dzV exp

[
− im

ℏ2k

∫ z

−∞
dz′ V

]
(9.14)

と表される。ここで、ベッセル関数の積分表示の公式∫ 2π

0

dϕe−ikbθ cosϕ = 2πJ0(kbθ) (9.15)
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と ∫ ∞

−∞
dzV exp

(
− im

ℏ2k

∫ z

−∞
dz′ V

)
=
iℏ2k
m

exp

[
− im

ℏ2k

∫ z

−∞
dz′ V

] ∣∣∣z=∞

z=−∞
(9.16)

となることを用いると、(9.17) は最終的に

f(k,k′) = −ik
∫ ∞

0

bdbJ0(kbθ)
[
e2i∆(b) − 1

]
(9.17)

∆(b) ≡ − im

2kℏ2

∫ ∞

−∞
dz′ V (

√
b2 + z2) (9.18)

と与えられる。

2. ベッセル関数の積分表示

ここで、ベッセル関数の積分表示の公式を求めてみよう。そのために、唐突であるが、複

素関数

f(z) = e
x
2 (z−

1
z ) (9.19)

を z = 0 の周りでローラン展開してみよう：f(z) =
∑∞

n=−∞Anz
n。展開係数 An は複素平

面内で z = 0 を囲む閉曲線 C の周回積分によって次のように与えられる：

An =
1

2πi

∮
C

e
x
2 (z−

1
z )

zn+1
dz (9.20)

ここで、C として単位円をとり、z = eiϕ と書けば

An =
1

2πi

∫ 2π

0

e
x
2
(eiϕ−e−iϕ)

ei(n+1)ϕ
ieiϕdϕ

=
1

2π

∫ 2π

0

e−i(nϕ−x sinϕ)dϕ (9.21)

=
1

π

∫ π

0

cos(nϕ− x sinϕ)dϕ (9.22)

と表される。

次に、この展開係数 An が、以前求めた (7.38a) で表される第 1種ベッセル関数 Jn(x) そ

のものであること（！）を示そう。(9.20) で z = 2u/x と変数変換すると

An =
1

2πi

(x
2

)n ∮
C

eu−
x2

4u

un+1
du (9.23)
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となる。ここで、e−
x2

4u をテイラー展開し

e−
x2

4u =
∞∑
k=0

(−1)k

k!

(x
2

)2k 1

uk
(9.24)

(9.23) に代入すると

An =
1

2πi

∞∑
k=0

(−1)k

k!

(x
2

)2k+n
∮
C

eu

uk+n+1
du (9.25)

となる。ここでさらにグルサーの公式

f (n)(z) =
n!

2πi

∮
C

f(ζ)

(ζ − z)(n+ 1)
dζ (9.26)

を使うと、(9.25) の周回積分は 2πi/(k + n)! となるので、最終的に

An =
∞∑
k=0

(−1)k

k!(k + n)!

(x
2

)2k+n

= Jn(x) (9.27)

となる。ここで最後の等式では (7.38a) を用いた。したがって、(9.21) あるいは (9.22) より

Jn(x) =
1

2π

∫ 2π

0

e−i(nϕ−x sinϕ)dϕ =
1

π

∫ π

0

cos(nϕ− x sinϕ)dϕ (9.28)

をえる。n = 0 のときには ϕ → ϕ + π/2 と置き換えれば J0(x) = 1
2π

∫ 2π

0
ei cosϕdϕ ともか

ける。

9–2. 部分波展開の方法

(9.1) 式で、ラプラス演算子∇2を極座標表示 (6.13)し、(8.48)式下で導入した角運動量

演算子L = x× (−iℏ∇)を用いると[
− ℏ2

2mr2
∂

∂r

(
r2
∂

∂r

)
+

L2

2mr2
+ V (r)

]
Ψ(r, θ, ϕ) = EΨ(r, θ, ϕ) (9.29)

さらに、Ψ(r, θ, ϕ) =
∑

ℓ,m uℓ(r)Yℓm(θ, ϕ) と球面調和関数展開すると、(8.48)式より uℓ(r) は[
− ℏ2

2m

(
d2

dr2
+

2

r

d

dr

)
+
ℓ(ℓ+ 1)ℏ2

2mr2
+ V (r)− E

]
uℓ = 0 (9.30)

を満たす。このように角運動量の固有値 ℓ で波動関数を展開して解く方法を部分波展開

(partial wave expansion)といい、展開の各 ℓ の項を部分波という。
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1. 球ベッセル関数

ここで、特に V (r)が定数であるとき、V (r) = V0、

k =

√
2m(E − V0)

ℏ
, x = kr (9.31)

と置くと、(9.30)式は [
d2

dx2
+

2

x

d

dx
+

(
1− ℓ(ℓ+ 1)

x2

)]
uℓ = 0 (9.32)

となる。この微分方程式を球ベッセル微分方程式といい、その解を球ベッセル関数という

（ベッセル微分方程式 (7.29)との違いに注意）。２つの線形独立な解 jℓ(x)(第 1種球ベッセル

関数）, nℓ(x)(第 2種球ベッセル関数) はベッセル関数と次のような関係にある。

jℓ(x) =

√
π

2x
Jℓ+ 1

2
(x) (9.33)

nℓ(x) =

√
π

2x
Nℓ+ 1

2
(x) (9.34)

また、|x| ≪ 1のときには

jℓ(x) →
xℓ

(2ℓ+ 1)!!
(9.35)

nℓ(x) → −(2ℓ− 1)!!

zℓ+1
(9.36)

一方、|x| ≫ 1 のときには

jℓ(x) →
cos
(
x− (ℓ+1)π

2

)
x

=
sin
(
x− ℓπ

2

)
x

(9.37)

nℓ(x) →
sin
(
x− (ℓ+1)π

2

)
x

= −
cos
(
x− ℓπ

2

)
x

(9.38)

となる。したがって、h(1)ℓ = jℓ + inℓ, h
(2)
ℓ = jℓ − inℓ は、波動関数の時間依存性 e−iEt/ℏ と

合わせて、それぞれ遠方で出ていく波と入ってくる波を表す:h
(1)
ℓ → ei(x−(ℓ+1)π/2)/x, h

(2)
ℓ →

e−i(x−(ℓ+1)π/2)/x。h(1)ℓ (h
(2)
ℓ ) を、それぞれ第 1種（第 2種）球ハンケル関数という。

2. 平面波の部分波展開

自由粒子 (V (r) = 0)に対して、(9.32)式の解でいたるところ有界な解としてはただ一つ

jℓ(kr)がある。したがって、正のエネルギー E = ℏ2k2/2m の値一つ一つに対して、角運動
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量 ℓ,m の固有解 jℓ(kr)Yℓm(θ, ϕ) が存在する。k は k > 0 のすべての連続的な値をとること

ができる。これらの球面波の全体は完全正規直交系をなす。

一方、平面波 eik·x の全体は、自由粒子の固有関数からなるもう一つの完全正規直交系を

つくる。

自由粒子のエネルギーの固有値は無限に縮退している。球面波は完全系をなすから、あ

る与えられた波数 k に対して平面波 eik·x は球面波で展開できる。

eik·x =
∞∑
ℓ=0

ℓ∑
m=−ℓ

aℓm(k)jℓ(kr)Yℓm(θ, ϕ) (9.39)

ここで、z 軸を kの方向にとれば eik·x = eikr cos θとなって、ϕによらなくなるのでmの和で

m = 0としたもののみ残る。すなわち、ルジャンドル展開に帰着する。

eik·x = eikr cos θ =
∞∑
ℓ=0

cℓjℓ(kr)Pℓ(cos θ) (9.40)

展開係数 cℓ を決定する。そのために、(9.40)式の両辺を x = kr で微分すると

i cos θeix cos θ =
∞∑
ℓ=0

cℓ
djℓ(x)

dx
Pℓ(cos θ)

= i
∞∑
ℓ=0

cℓjℓ(kr) cos θPℓ(cos θ) (9.41)

となるが、ここでルジャンドル多項式の漸化式

(2ℓ+ 1) cos θPℓ = (ℓ+ 1)Pℓ+1 + ℓPℓ−1 (9.42)

を用いると
∞∑
ℓ=0

cℓ
djℓ(x)

dx
Pℓ = i

∞∑
ℓ=0

(
ℓ+ 1

2ℓ+ 3
cℓ+1jℓ+1 +

ℓ

2ℓ− 1
cℓ−1jℓ+1

)
Pℓ (9.43)

となる。さらに、球ベッセル関数の漸化式

djℓ
dx

= jℓ−1 −
ℓ+ 1

2ℓ+ 1
(jℓ+1 + jℓ−1) (9.44)

を用いて、(9.43) 式の両辺の Pℓ の係数を比べて

ℓ

(
cℓ

2ℓ+ 1
− i

cℓ−1

2ℓ− 1

)
jℓ−1(x) = i(ℓ+ 1)

(
cℓ+1

2ℓ+ 3
− i

cℓ
2ℓ+ 1

)
jℓ+1(x) (9.45)

となる。これが任意の x = kr に対して成り立つには

cℓ+1

2ℓ+ 3
− i

cℓ
2ℓ+ 1

= 0 (9.46)
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とならなければならない。つまり、cℓ = (2ℓ+ 1)iℓc0。ここで、(9.40)式で x = 0 とすると、

jℓ(0) = δℓ0 より、1 =
∑∞

ℓ=0 cℓjℓ(0)Pℓ = c0。したがって、cℓ = (2ℓ+ 1)iℓ となり、

eik·x = eikr cos θ =
∞∑
ℓ=0

(2ℓ+ 1)iℓjℓ(kr)Pℓ(cos θ) (9.47)

をえる。

3. 散乱振幅の部分波展開

さて、今度は r → ∞ で 1/r より早くゼロになるようなポテンシャル V (r) のもとでの散

乱問題を考えよう。すなわち、原点に入射する平面波 eik·x が中心力ポテンシャルの影響を

受けてある立体角方向 dΩ に散乱される確率を求める。入射方向 kを z 軸にとれば、波動関

数はルジャンドル多項式で展開でき、Schrödinger方程式 (9.30)式で r → ∞ とすれば、波

動関数は球ベッセル関数 jℓと nℓの線形和で書けるから、r → ∞ では

Ψ(r, θ) →
∑
ℓ

aℓ
sin
(
kr − ℓπ

2
+ δℓ

)
r

Pℓ(cos θ) (9.48)

のように書ける。一方、散乱した波は、原点から球面波として広がるから eikr/rに比例する

はずである。これと入射波を足し合わせて、散乱波は遠方では、

Ψ(r, θ) → eik·x +
f(θ)

r
eikr (9.49)

と書けるはずである。散乱振幅 f(θ) は

f(θ) =
∑
ℓ

(2ℓ+ 1)fℓPℓ(cos θ) (9.50)

と展開できる。ここで便宜上、展開係数に (2ℓ+ 1) を掛けた。
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散乱振幅と微分断面積� �
一般に、確率密度は連続の式と同様の保存則にしたがう：

∂ρ

∂t
≡ ∂|Ψ|2

∂t
= Ψ∗∂Ψ

∂t
+
∂Ψ∗

∂t
Ψ = −∇ ·

(
− iℏ
2m

(Ψ∗∇Ψ−Ψ∇Ψ)

)
≡ −∇ · J

つまり、確率密度 ρ = |Ψ|2 の時間変化は確率密度流 Jの発散で与えられる。入射波 eik·x

の確率密度は 1、確率密度流は J = ℏk/mであり、(9.49) の第 2項の散乱波については、

確率密度は ρ = |f |2/r2、確率密度流は J = ℏk|f |2r̂/(mr2) である。確率密度流の速さ

v は v = ℏk/m である。距離 r、立体角方向 dΩ へ単位時間あたりに散乱される割合は

|f |2vdΩ となる。散乱の（微分）断面積を dσ とすると、入射波 eik·x が散乱される割合

は単位時間当たり vdσ であるから、微分断面積は

dσ

dΩ
= |f |2

で与えられる。すなわち、散乱振幅 f(θ) は散乱の微分断面積を決めている。� �
一方、r が大きいときには (9.38)より、

jℓ(kr) →
ei(kr−

ℓ
2
π) − e−i(kr− ℓ

2
π)

2ikr
(9.51)

と展開され、また、iℓ = ei
ℓ
2
π であるから、(9.49) は ℓ の和で

Ψ =
∑
ℓ

[
(2ℓ+ 1)Pℓ e

i ℓ
2
π

(
ei(kr−

ℓ
2
π) − e−i(kr− ℓ

2
π)

2ikr

)
+ (2ℓ+ 1)Pℓfℓ

eikr

r

]

=
∑
ℓ

(2ℓ+ 1)Pℓ

(
(1 + 2ikfℓ)

eikr

r
− e−i(kr−ℓπ)

r

)
(9.52)

となる。このように波動関数を ℓ ごとの和で表すことを部分波展開といい、各 ℓ の項を部

分波という。第 1項は外向きの球面波、第 2項は内向きの球面波を表す。

今の場合、Ψ はエネルギー固有状態であるから、確率密度は保存される：∂|Ψ|2/∂t = 0。

つまり、遠方では、流束は存在しない：

d

dt

∫
|Ψ|2dV =

∫
∂|Ψ|2

∂t
dV = 0 = −

∫
∇ · JdV = −

∫
J · ndS (9.53)

したがって、部分波展開における外向波と内向波の確率密度流は等しくなければならない。

つまり、展開係数 1 + 2ikfℓ は大きさが 1でなければならないので、位相 δℓ を用いて次のよ

うにあらわされる：

1 + 2ikfℓ = e2iδℓ (9.54)
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結局、散乱波は遠方で、(9.49) で散乱振幅 f(θ) は

f(θ) =
1

k

∑
ℓ

(2ℓ+ 1)eiδℓ sin2 δℓPℓ(cos θ) (9.55)

あるいは部分波展開で

Ψ =
∑
ℓ

(2ℓ+ 1)
Pℓ(cos θ)

2ikr

(
ei(kr+2δℓ) − e−i(kr−ℓπ)

)
(9.56)

と与えられる。

4. アイコナール近似

アイコナール近似の下での部分波展開の散乱振幅を求め、以前求めた (9.17) との関係を

見てみよう。

そのために、まず波数 k と角運動量固有値 ℓとの関係を考えよう。無限遠方から衝突径数

b で入射してくる粒子（波）を考える。古典的には、原点から粒子までの距離を r とし、入

射方向の軸と粒子の位置ベクトルとのなす角を ϕ とすると、十分遠方では b = r sinϕ ≃ rϕ

となるから、ϕ ≃= b/r である。古典的な粒子の角運動量は L = mr2ϕ̇、(動径方向の)運動

量は p = mṙ であるから、その比をとると∣∣∣∣Lp
∣∣∣∣ =

∣∣∣∣∣r2ϕ̇ṙ
∣∣∣∣∣ =

∣∣∣∣r2dϕdr
∣∣∣∣ ≃ ∣∣∣∣r2 ddr

(
b

r

)∣∣∣∣ = b (9.57)

となる。ここで、ϕ ≃ b/r を用いた（粒子は入射しているから、その運動量はそもそも負で

あることに注意）。角運動量と運動量の大きさの比は衝突径数ということになる。

これを量子論で考えると、p = ℏk で、角運動量演算子 L2 の固有値は ℓ(ℓ + 1)ℏ2 であるか

ら、(9.57) に対応して √
ℓ(ℓ+ 1)ℏ ≃ ℏkb (9.58)

という関係が得られる。つまり、波数 k が大きいというアイコナール近似は、ℓ が大きいこ

とに対応していることになる。ℓ≫ 1 であるならば、(9.58) は

ℓ ≃ kb (9.59)

としてよい。
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FIG. 34: 入射波（青実線）と衝突径数 b

ℓ が大きいということは、多くの部分波の寄与があることになるので、ℓ は連続変数とみ

なしてよいことになる。そこで、(9.55) において、ℓ = kb とし、∆ℓ = k∆b であるから、

k → ∞ のときに、∆b→ db となり、数列和は積分に移行する：∑
ℓ

∆ℓ→ k

∫
db (9.60)

また、アイコナール近似 (ℓ≫ 1)では、散乱角 θ は小さいから、Pℓ(cos θ) ≃ J0(ℓθ) = J0(kbθ)

13となる。さらに位相のずれ δℓ を (9.18) の ∆(b)|b=ℓ/k で置き換えると、(9.55) は

f(θ) → −ik
∫
dbbJ0(kbθ)(e

2i∆(b) − 1) (9.61)

となり、(9.17) の表式と一致する。すなわち、アイコナール近似では位相のずれは (9.18) の

∆(b) を用いて計算すればよい。

13 ℓ ≫ 1 のときには Pℓ(cos θ) =
(√

θ/ sin θ
)
J0(ℓθ) と近似できる。
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ν ≫ 1, θ ≪ 1 のときのルジャンドル関数� �
ν ≫ 1, θ ≪ 1 のときのルジャンドル関数 Pν(cos θ) が 0 次のベッセル関数に近似できる

ことを示してみよう。x = cos θ として、Pν(cos θ) は次のルジャンドル微分方程式 (8.8)

を満たす:

(1− x2)
d2Pν

dx2
− 2x

dPν

dx
+ ν(ν + 1)Pν = 0 (9.62)

ここで、ν ≫ 1より ν(ν+1) ≃ ν2 である。さらに、θ ≪ 1とするとx = cos θ ≃ 1−θ2/2

であるから、dx = −θdθ となり、(9.62) は

d2Pν

dθ2
+

1− θ2

θ

dPν

dθ
+ ν2Pν ≃ d2Pν

dθ2
+

1

θ

dPν

dθ
+ ν2Pν = 0 (9.63)

となる。ここでさらに z = νθ と置くと

d2Pν

dz2
+

1

z

dPν

dz
+ Pν = 0 (9.64)

と書き換えられる。この式と n 次のベッセル微分方程式の標準形 (7.29)

d2Jn
dz2

+
1

z

dJn
dz

+

(
1− n2

z2

)
Jn = 0 (9.65)

を比べれば（原点で有界な解に興味があるので第 1種ベッセル関数を使った）、

Pν(cos θ) ≃ J0(z) = J0(νθ) (9.66)

を得る。� �
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